Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2308847, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566434

ABSTRACT

Electrolyte-gated synaptic transistors (EGSTs) have attracted considerable attention as synaptic devices owing to their adjustable conductance, low power consumption, and multi-state storage capabilities. To demonstrate high-density EGST arrays, 2D materials are recommended owing to their excellent electrical properties and ultrathin profile. However, widespread implementation of 2D-based EGSTs has challenges in achieving large-area channel growth and finding compatible nanoscale solid electrolytes. This study demonstrates large-scale process-compatible, all-solid-state EGSTs utilizing molybdenum disulfide (MoS2) channels grown through chemical vapor deposition (CVD) and sub-30 nm organic-inorganic hybrid electrolyte polymers synthesized via initiated chemical vapor deposition (iCVD). The iCVD technique enables precise modulation of the hydroxyl group density in the hybrid matrix, allowing the modulation of proton conduction, resulting in adjustable synaptic performance. By leveraging the tunable iCVD-based hybrid electrolyte, the fabricated EGSTs achieve remarkable attributes: a wide on/off ratio of 109, state retention exceeding 103, and linear conductance updates. Additionally, the device exhibits endurance surpassing 5 × 104 cycles, while maintaining a low energy consumption of 200 fJ/spike. To evaluate the practicality of these EGSTs, a subset of devices is employed in system-level simulations of MNIST handwritten digit recognition, yielding a recognition rate of 93.2%.

2.
Proc Natl Acad Sci U S A ; 121(19): e2313590121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683978

ABSTRACT

Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.


Subject(s)
Brain-Derived Neurotrophic Factor , Exosomes , Muscle, Skeletal , Exosomes/metabolism , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/innervation , Brain-Derived Neurotrophic Factor/metabolism , Mice , Fibronectins/metabolism , Motor Neurons/metabolism , Interleukin-6/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Neurons/metabolism , Nerve Growth Factors/metabolism , Myokines
3.
Nat Commun ; 15(1): 2800, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555289

ABSTRACT

Promising advances in membrane technology can lead to energy-saving and eco-friendly solutions in industrial sectors. This work demonstrates a highly selective membrane with ultrathin and highly interconnected organosiloxane polymer nanolayers by initiated chemical vapor deposition to effectively separate solutes within the molecular weight range of 150-300 g mol-1. We optimize the poly(1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane) membrane by adjusting both the thickness of the selective layer and the pore sizes of its support membranes. Notably, the 29 nm selective layer imparts a uniformly narrow molecular sieving property, providing a record-high solute-solute selectivity of 39.88 for different-sized solutes. Furthermore, a solute-solute selectivity of 11.04 was demonstrated using the real-world active pharmaceutical ingredient mixture of Acyclovir and Valacyclovir, key components for Herpes virus treatment, despite their molecular weight difference of less than 100 g mol-1. The highly interconnected membrane is expected to meet rigorous requirements for high-standard active pharmaceutical ingredient separation.

4.
Nat Commun ; 15(1): 2439, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499561

ABSTRACT

Probabilistic inference in data-driven models is promising for predicting outputs and associated confidence levels, alleviating risks arising from overconfidence. However, implementing complex computations with minimal devices still remains challenging. Here, utilizing a heterojunction of p- and n-type semiconductors coupled with separate floating-gate configuration, a Gaussian-like memory transistor is proposed, where a programmable Gaussian-like current-voltage response is achieved within a single device. A separate floating-gate structure allows for exquisite control of the Gaussian-like current output to a significant extent through simple programming, with an over 10000 s retention performance and mechanical flexibility. This enables physical evaluation of complex distribution functions with the simplified circuit design and higher parallelism. Successful implementation for localization and obstacle avoidance tasks is demonstrated using Gaussian-like curves produced from Gaussian-like memory transistor. With its ultralow-power consumption, simplified design, and programmable Gaussian-like outputs, our 3-terminal Gaussian-like memory transistor holds potential as a hardware platform for probabilistic inference computing.

5.
ACS Nano ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315048

ABSTRACT

Developing a superomniphobic surface that exceeds the static and dynamic repellency observed in nature's springtails for various liquids presents a significant challenge in the realm of surface and interface science. However, progress in this field has been particularly limited when dealing with low-surface-tension liquids. This is because dynamic repellency values are typically at least 2 orders of magnitude lower than those observed with water droplets. Our study introduces an innovative hierarchical topography demonstrating exceptional dynamic repellency to low-surface-tension liquids. Inspired by the structural advantages found in springtails, we achieve a static contact angle of >160° and the complete rebound of droplet impact with a Weber number (We) of ∼104 using ethanol. These results surpass all existing benchmarks that have been reported thus far, including those of natural surfaces. The key insight from our research is the vital role of the microscale air pocket size, governed by wrinkle wavelength, in both static and dynamic repellency. Additionally, nanoscale air pockets within serif-T nanostructures prove to be essential for achieving omniphobicity. Our investigations into the wetting dynamics of ethanol droplets further reveal aspects such as the reduction in contact time and the occurrence of a fragmentation phenomenon beyond We ∼ 350, which has not been previously observed.

6.
Small ; : e2312283, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409517

ABSTRACT

An ion-based synaptic transistor (synaptor) is designed to emulate a biological synapse using controlled ion movements. However, developing a solid-state electrolyte that can facilitate ion movement while achieving large-scale integration remains challenging. Here, a bio-inspired organic synaptor (BioSyn) with an in situ ion-doped polyelectrolyte (i-IDOPE) is demonstrated. At the molecular scale, a polyelectrolyte containing the tert-amine cation, inspired by the neurotransmitter acetylcholine is synthesized using initiated chemical vapor deposition (iCVD) with in situ doping, a one-step vapor-phase deposition used to fabricate solid-state electrolytes. This method results in an ultrathin, but highly uniform and conformal solid-state electrolyte layer compatible with large-scale integration, a form that is not previously attainable. At a synapse scale, synapse functionality is replicated, including short-term and long-term synaptic plasticity (STSP and LTSP), along with a transformation from STSP to LTSP regulated by pre-synaptic voltage spikes. On a system scale, a reflex in a peripheral nervous system is mimicked by mounting the BioSyns on various substrates such as rigid glass, flexible polyethylene naphthalate, and stretchable poly(styrene-ethylene-butylene-styrene) for a decentralized processing unit. Finally, a classification accuracy of 90.6% is achieved through semi-empirical simulations of MNIST pattern recognition, incorporating the measured LTSP characteristics from the BioSyns.

7.
Adv Healthc Mater ; : e2303272, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412280

ABSTRACT

Atopic dermatitis (AD), a prevalent skin condition often complicated by microbial infection, poses a significant challenge in identifying the responsible pathogen for its effective management. However, a reliable, safe tool for pinpointing the source of these infections remains elusive. In this study, a novel on-site pathogen detection that combines chemically functionalized nanotopology with genetic analysis is proposed to capture and analyze pathogens closely associated with severe atopic dermatitis. The chemically functionalized nanotopology features a 3D hierarchical nanopillar array (HNA) with a functional polymer coating, tailored to isolate target pathogens from infected skin. This innovative nanotopology demonstrates superior pathogenic capture efficiency, favorable entrapment patterns, and non-cytotoxicity. An HNA-assembled stick is utilized to directly retrieve bacteria from infected skin samples, followed by extraction-free quantitative loop-mediated isothermal amplification (direct qLAMP) for validation. To mimic human skin conditions, porcine skin is employed to successfully capture Staphylococcus aureus, a common bacterium exacerbating AD cases. The on-site detection method exhibits an impressive detection limit of 103 cells mL-1 . The HNA-assembled stick represents a promising tool for on-site detection of bacteria associated with atopic dermatitis. This innovative approach enables to deepen the understanding of AD pathogenesis and open avenues for more effective management strategies for chronic skin conditions.

8.
Bioact Mater ; 34: 401-413, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38282966

ABSTRACT

In vitro vascularized cancer models utilizing microfluidics have emerged as a promising tool for mechanism study and drug screening. However, the lack of consideration and preparation methods for cancer cellular sources that are capable of adequately replicating the metastatic features of circulating tumor cells contributed to low relevancy with in vivo experimental results. Here, we show that the properties of cancer cellular sources have a considerable impact on the validity of the in vitro metastasis model. Notably, with a hydrophobic surface, we can create highly metastatic spheroids equipped with aggressive invasion, endothelium adhesion capabilities, and activated metabolic features. Combining these metastatic spheroids with the well-constructed microfluidic-based extravasation model, we validate that these metastatic spheroids exhibited a distinct extravasation response to epidermal growth factor (EGF) and normal human lung fibroblasts compared to the 2D cultured cancer cells, which is consistent with the previously reported results of in vivo experiments. Furthermore, the applicability of the developed model as a therapeutic screening platform for cancer extravasation is validated through profiling and inhibition of cytokines. We believe this model incorporating hydrophobic surface-cultured 3D cancer cells provides reliable experimental data in a clear and concise manner, bridging the gap between the conventional in vitro models and in vivo experiments.

9.
Anal Chem ; 95(38): 14357-14364, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37712516

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic demands rapid and straightforward diagnostic tools to prevent early-stage viral transmission. Although nasopharyngeal swabs are a widely used patient sample collection method for diagnosing COVID-19, using these samples for diagnosis without RNA extraction increases the risk of obtaining false-positive and -negative results. Thus, multiple purification steps are necessary, which are time-consuming, generate significant waste, and result in substantial sample loss. To address these issues, we developed surface-modified polymerase chain reaction (PCR) tubes using the tertiary aminated polymer poly(2-dimethylaminomethylstyrene) (pDMAMS) via initiated chemical vapor deposition. Introducing the clinical samples into the pDMAMS-coated tubes resulted in approximately 100% RNA capture efficiency within 25 min, which occurred through electrostatic interactions between the positively charged pDMAMS surface and the negatively charged RNA. The captured RNA is then detected via chamber digital PCR, enabling a sensitive, accurate, and rapid diagnosis. Our platform provides a simple and efficient RNA extraction and detection strategy that allows detection from 22 nasopharyngeal swabs and 21 saliva specimens with 0% false negatives. The proposed method can facilitate the diagnosis of COVID-19 and contribute to the prevention of early-stage transmission.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19 Testing , Polymerase Chain Reaction , Polymers , RNA
10.
Small Methods ; 7(11): e2300628, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37527002

ABSTRACT

The interface between dielectric and organic semiconductor is critically important in determining organic thin-film transistor (OTFT) performance. Surface polarity of the dielectric layer can hinder charge transport characteristics, which has restricted utilization of polymeric dielectric materials containing polar functional groups. Herein, the electrical characteristics of OTFTs are analyzed depending on the alkyl chain length of organic semiconductors and surface polarity of polymer dielectrics. High-performance dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene (DBTTT) and newly synthesized its alkylated derivatives (C6-DBTTT and C10-DBTTT) are utilized as organic semiconductors. As dielectric layers, non-polar poly(1,3,5-trimethyl-1,3,5-trivinylcyclitrisiloxane) (pV3D3) and poly(2-cyanoethyl acrylate-co-diethylene glycol divinyl ether) [p(CEA-co-DEGDVE)] with polar cyanide functionality are utilized. The fabricated OTFTs with pV3D3 commonly exhibit the excellent charge transport characteristics. In addition, the OTFT performance is improved with lengthening the alkyl chain in organic semiconductors, which can be attributed to the molecular orientation of semiconductors. On the other hand, non-alkylated DBTTT OTFTs with polar p(CEA-co-DEGDVE) show relatively poor electrical characteristics, while their performance is drastically enhanced with the alkylated DBTTTs. The ultraviolet photoelectron spectroscopy (UPS) reveals that surface polarity of the dielectric layer can be abated with alkyl chain in organic semiconductors. It is believed that this study can provide a useful insight to optimize dielectric/semiconductor interface to achieve high-performance OTFTs.

11.
Mater Horiz ; 10(10): 4571-4580, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37581348

ABSTRACT

The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid, user-friendly nucleic acid testing that involves simple but efficient RNA extraction. Here, we present a charge-shifting polyplex as an RNA extraction carrier for advanced diagnosis of infectious viral diseases. The polyplex comprises poly(2-(dimethylamino) ethyl acrylate) (pDMAEA) electrostatically conjugated with RNA. The pDMAEA film can rapidly dissolve in the viral RNA solution, promoting immediate binding with RNA to form the polyplex, which enables the efficient capture of a substantial quantity of RNA. Subsequently, the captured RNA can be readily released by the quick hydrolysis of pDMAEA at the onset of quantitative reverse transcription-polymerase chain reaction (qRT-PCR), streamlining the entire process from RNA extraction to analysis. The developed method requires only 5 min of centrifugation and enables the detection of RNA in a one-pot setup. Moreover, the proposed method is fully compatible with high-speed qRT-PCR kits and can identify clinical samples within 1 h including the entire extraction to detection procedure. Indeed, the method successfully detected influenza viruses, SARS-CoV-2, and their delta and omicron variants in 260 clinical samples with a sensitivity of 99.4% and specificity of 98.9%. This rapid, user-friendly polyplex-based approach represents a significant breakthrough in molecular diagnostics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/analysis , COVID-19/diagnosis , COVID-19 Testing
12.
Nat Commun ; 14(1): 3757, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353504

ABSTRACT

A new type of heterojunction non-volatile memory transistor (H-MTR) has been developed, in which the negative transconductance (NTC) characteristics can be controlled systematically by a drain-aligned floating gate. In the H-MTR, a reliable transition between N-shaped transfer curves with distinct NTC and monolithically current-increasing transfer curves without apparent NTC can be accomplished through programming operation. Based on the H-MTR, a binary/ternary reconfigurable logic inverter (R-inverter) has been successfully implemented, which showed an unprecedentedly high static noise margin of 85% for binary logic operation and 59% for ternary logic operation, as well as long-term stability and outstanding cycle endurance. Furthermore, a ternary/binary dynamic logic conversion-in-memory has been demonstrated using a serially-connected R-inverter chain. The ternary/binary dynamic logic conversion-in-memory could generate three different output logic sequences for the same input signal in three logic levels, which is a new logic computing method that has never been presented before.

13.
Nano Converg ; 10(1): 25, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37243716

ABSTRACT

Sensitive and accurate capture, enrichment, and identification of drug-resistant bacteria on human skin are important for early-stage diagnosis and treatment of patients. Herein, we constructed a three-dimensional hierarchically structured polyaniline nanoweb (3D HPN) to capture, enrich, and detect drug-resistant bacteria on-site by rubbing infected skins. These unique hierarchical nanostructures enhance bacteria capture efficiency and help severely deform the surface of the bacteria entrapped on them. Therefore, 3D HPN significantly contributes to the effective and reliable recovery of drug-resistant bacteria from the infected skin and the prevention of potential secondary infection. The recovered bacteria were successfully identified by subsequent real-time polymerase chain reaction (PCR) analysis after the lysis process. The molecular analysis results based on a real-time PCR exhibit excellent sensitivity to detecting target bacteria of concentrations ranging from 102 to 107 CFU/mL without any fluorescent signal interruption. To confirm the field applicability of 3D HPN, it was tested with a drug-resistant model consisting of micropig skin similar to human skin and Klebsiella pneumoniae carbapenemase-producing carbapenem-resistant Enterobacteriaceae (KPC-CRE). The results show that the detection sensitivity of this assay is 102 CFU/mL. Therefore, 3D HPN can be extended to on-site pathogen detection systems, along with rapid molecular diagnostics through a simple method, to recover KPC-CRE from the skin.

14.
ACS Nano ; 17(11): 10898-10905, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37222273

ABSTRACT

Developing a methodology to enhance long-term stability is one of the most important issues in MXene research, since they are prone to oxidation in the ambient environment. Although various approaches have been suggested to improve the stability of MXene, they have suffered from complicated processes and limited applicability to various types of MXene nanostructures. Herein, we report a simple and versatile technique to enhance the environmental stability of MXenes. Ti3C2Tx MXene films were decorated with a highly hydrophobic polymer, 1H,1H,2H,2H-perfluorodecyl methacrylate (PFDMA), using initiated chemical vapor deposition (iCVD) where iCVD allows the facile postdeposition of polymer films of desired thickness on MXene films. The oxidation resistance was evaluated by fabricating MXene gas sensors and measuring the change in signal-to-noise ratio (SNR) of volatile organic compound (VOC) gases under harsh conditions (RH 100% at 50 °C) for several weeks where the performance in the absence and presence of PFDMA was compared. The results show that while the SNR of PFDMA-Ti3C2Tx sensors was retained, a dramatic increase of the noise level and a decrease in the SNR were observed in pristine Ti3C2Tx. We believe that this simple and nondestructive method will offer great potential to enhance the stability of a wide range of MXenes.

15.
Mater Horiz ; 10(6): 2035-2046, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37039721

ABSTRACT

Memristive synapses based on conductive bridging RAMs (CBRAMs) utilize a switching layer having low binding energy with active metals for excellent analog conductance modulation, but the resulting unstable conductive filaments cause fluctuation and drift of the conductance. This tunability-stability dilemma makes it difficult to implement practical neuromorphic computing. A novel method is proposed to enhance the stability and controllability of conductive filaments by introducing imidazole groups that boost the nucleation of Cu nanoclusters in the ultrathin polymer switching layer through the initiated chemical vapor deposition (iCVD) process. It is confirmed that conductive filaments based on nanoclusters with specific gaps are generated in the copolymer medium using this method. Furthermore, by modulating the tunneling gaps, an ultra-wide conductance range of analog tunable conductive filaments is achieved from several hundreds of nS to a few mS with a sub-1 V driving voltage. Through this, both reliable and stable analog switching are achieved with low cycle-to-cycle and device-to-device weight update variations and separable state retention with 32 states. This approach paves the way for the extension of state availability in synaptic devices to overcome the tunability-stability dilemma, which is essential for the synaptic elements in neuromorphic systems.

16.
Int J Mol Sci ; 24(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37108567

ABSTRACT

Human mitochondria contain a circular genome that encodes 13 subunits of the oxidative phosphorylation system. In addition to their role as powerhouses of the cells, mitochondria are also involved in innate immunity as the mitochondrial genome generates long double-stranded RNAs (dsRNAs) that can activate the dsRNA-sensing pattern recognition receptors. Recent evidence shows that these mitochondrial dsRNAs (mt-dsRNAs) are closely associated with the pathogenesis of human diseases that accompany inflammation and aberrant immune activation, such as Huntington's disease, osteoarthritis, and autoimmune Sjögren's syndrome. Yet, small chemicals that can protect cells from a mt-dsRNA-mediated immune response remain largely unexplored. Here, we investigate the potential of resveratrol (RES), a plant-derived polyphenol with antioxidant properties, on suppressing mt-dsRNA-mediated immune activation. We show that RES can revert the downstream response to immunogenic stressors that elevate mitochondrial RNA expressions, such as stimulation by exogenous dsRNAs or inhibition of ATP synthase. Through high-throughput sequencing, we find that RES can regulate mt-dsRNA expression, interferon response, and other cellular responses induced by these stressors. Notably, RES treatment fails to counter the effect of an endoplasmic reticulum stressor that does not affect the expression of mitochondrial RNAs. Overall, our study demonstrates the potential usage of RES to alleviate the mt-dsRNA-mediated immunogenic stress response.


Subject(s)
Mitochondria , RNA, Double-Stranded , Humans , Resveratrol/pharmacology , Resveratrol/metabolism , RNA, Mitochondrial/genetics , Mitochondria/metabolism , RNA, Double-Stranded/metabolism , Immunity, Innate
17.
Adv Mater ; 35(24): e2300023, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36938884

ABSTRACT

With advances in artificial intelligent services, brain-inspired neuromorphic systems with synaptic devices are recently attracting significant interest to circumvent the von Neumann bottleneck. However, the increasing trend of deep neural network parameters causes huge power consumption and large area overhead of a nonlinear neuron electronic circuit, and it incurs a vanishing gradient problem. Here, a memristor-based compact and energy-efficient neuron device is presented to implement a rectifying linear unit (ReLU) activation function. To emulate the volatile and gradual switching of the ReLU function, a copolymer memristor with a hybrid structure is proposed using a copolymer/inorganic bilayer. The functional copolymer film developed by introducing imidazole functional groups enables the formation of nanocluster-type pseudo-conductive filaments by boosting the nucleation of Cu nanoclusters, causing gradual switching. The ReLU neuron device is successfully demonstrated by integrating the memristor with amorphous InGaZnO thin-film transistors, and achieves 0.5 pJ of energy consumption based on sub-10 µA operation current and high-speed switching of 650 ns. Furthermore, device-to-system-level simulation using neuron devices on the MNIST dataset demonstrates that the vanishing gradient problem is effectively resolved by five-layer deep neural networks. The proposed neuron device will enable the implementation of high-density and energy-efficient hardware neuromorphic systems.

18.
Adv Healthc Mater ; 12(12): e2202371, 2023 05.
Article in English | MEDLINE | ID: mdl-36652539

ABSTRACT

Enhancing cardiomyocyte (CM) maturation by topographical cues is a critical issue in cardiac tissue engineering. Thus far, single-scale topographies with a broad range of feature shapes and dimensions have been utilized including grooves, pillars, and fibers. This study reports for the first time a hierarchical structure composed of nano-pillars (nPs) on micro-wrinkles (µWs) for effective maturation of CMs. Through capillary force lithography followed by a wrinkling process, vast size ranges of topographies are fabricated, and the responses of CMs are systematically investigated. Maturation of CMs on the hierarchical structures is highly enhanced compared to a single-scale topography: cardiac differentiation of H9C2s (rat cardiomyocytes) on the hierarchical topography is ≈ 2.8 and ≈ 1.9 times higher than those consisting of single-scale µWs and nPs. Both nPs and µWs have important roles in cardiac maturation, and the aspect ratio (height/diameter) of the nPs and the wavelength of the µWs are important in CM maturation. This enhancement is caused by strong focal adhesion and nucleus mediated mechanotransduction of CMs from the confinement effects of the different wavelengths of µWs and the cellular membrane protrusion on the nPs. This study demonstrates how a large family of hierarchical structures is used for cardiac maturation.


Subject(s)
Mechanotransduction, Cellular , Myocytes, Cardiac , Rats , Animals , Tissue Engineering/methods , Cell Differentiation
19.
Biosens Bioelectron ; 225: 115085, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36696850

ABSTRACT

Accurate and efficient detection of DNA is crucial for disease diagnosis and health monitoring. The traditional methods for DNA analysis involve multiple steps, including sample preparation, lysis, extraction, amplification, and detection. In this study, we present a one-step elution-free DNA analysis method based on the combination of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated light-up aptamer transcription (CLAT) assay and a DNA-capturing poly(2-dimethylaminomethyl styrene) (pDMAMS)-coated tube. The sample solution and lysis buffer are added to the pDMAMS-coated tube, and the DNA is efficiently captured on the surface via electrostatic interaction and directly detected by CLAT assay. The ability of the CRISPR/Cas9 system to specifically recognize DNA enables direct detection of DNA captured on the pDMAMS-coated tube. The combination of CLAT assay and pDMAMS-coated tube simplifies DNA detection in a single tube without the need for complicated extraction steps, improving sensitivity. Our platform demonstrated attomolar sensitivity in the detection of target DNA in cell lysate (0.92 aM), urine (7.7 aM), and plasma (94.6 aM) samples within 1 h. The practical applicability of this method was further demonstrated in experiments with tumor-bearing mice. We believe that this approach brings us closer to an all-in-one DNA purification and detection tube system and has potential applications in tissue and liquid biopsies, as well as various other DNA sensing applications.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Mice , Animals , CRISPR-Cas Systems/genetics , DNA/analysis , Oligonucleotides
20.
Small Methods ; 7(4): e2201341, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36707408

ABSTRACT

Boron nitride nanotube (BNNT) has attracted recent attention owing to its exceptional material properties; yet, practical implementation in real-life applications has been elusive, mainly due to the purity issues associated with its large-scale synthesis. Although different purification methods have been discussed so far, there lacks a scalable solution method in the community. In this work, a simple, high-throughput, and scalable purification of BNNT is reported via modification of an established sorting technique, aqueous polymer two-phase extraction. A complete partition mapping of the boron nitride species is established, which enables the segregation of the highly pure BNNT with a major impurity removal efficiency of > 98%. A successful scaling up of the process is illustrated and provides solid evidence of its diameter sorting behavior. Last, towards its macroscopic assemblies, a liquid crystal of the purified BNNT is demonstrated. The effort toward large-scale solution purification of BNNT is believed to contribute significantly to the macroscopic realization of its exceptional properties in the near future.

SELECTION OF CITATIONS
SEARCH DETAIL
...