Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Chemosphere ; 361: 142577, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857632

ABSTRACT

Water distribution networks play a crucial role in ensuring a reliable water supply, yet they encounter challenges such as corrosion, scale formation, and biofilm growth due to interactions with environmental elements. Biofilms and corrosion layers are significant contaminants in water pipes, formed by complex interactions with pipe materials. As the structure of these contamination layers varies depending on the pipe material, it is essential to investigate the contamination layer for each material individually. Specifically, biofilm growth is typically investigated concerning organic sources, while the growth of humus layers is examined in relation to inorganic elements such as manganese (Mn), iron (Fe), and aluminum (Al), which are major elements and organic substances found in water pipes. Real-time imaging of recently contaminated layers can provide important insights to improve system performance by optimizing operations and cleaning processes. In this study, cast iron (7.10 ± 0.78 nm) exhibits greater surface roughness compared to PVC (5.60 ± 0.14 nm) and provides favorable conditions for biofilm formation due to its positive charge. Over a period of 425 h, the fouling layer on cast iron and PVC surfaces gradually increased in fouling thickness, porosity, roughness, and density, reaching maximum value of 29.72 ± 3.6 µm, 11.44 ± 1.1%, 41673 ± 1025.6 pixels, and 0.80 ± 0.3 fouling layer pixel/layer pixel for cast iron, and 8.15 ± 0.4 µm, 20.64 ± 0.9%, 35916.6 ± 755.7 pixels, and 0.58 ± 0.1 fouling layer pixel/layer pixel, respectively. Within the scope of the current research, CNN model demonstrates high correlation coefficients (0.98 and 0.91) in predicting biofilm thickness for cast iron and PVC. The model also presented high accuracy in predicting porosity for both materials (over 0.91 for cast iron and 0.96 for PVC). While the model accurately predicted biofilm roughness and density for cast iron (correlation coefficients 0.98 and 0.94, respectively), it had lower accuracy for PVC (correlation coefficients 0.92 for both parameters).


Subject(s)
Biofilms , Iron , Water Supply , Biofilms/growth & development , Corrosion , Iron/chemistry , Iron/analysis , Environmental Monitoring/methods , Aluminum/chemistry , Polyvinyl Chloride/chemistry
2.
Environ Res ; 237(Pt 1): 116786, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37517485

ABSTRACT

Freshwater shortages are a consequence of the rapid increase in population, and desalination of saltwater has gained popularity as an alternative water treatment method in recent years. To date, the forward osmosis-reverse osmosis (FO-RO) hybrid technology has been proposed as a low-energy and environmentally friendly next-generation seawater desalination process. Scaling up the FO-RO hybrid system significantly affects the success of a commercial-scale process. However, neither the ideal structure nor the membrane components for plate-and-frame FO (PFFO) and spiral-wound FO (SWFO) are known. This study aims to explore and optimize the performance of SWFO-RO and PFFO-RO hybrid element-scale systems in the desalination of seawater. The results showed that both hybrid systems could yield high water recovery under optimal operating conditions. The prediction of the system performance (water flux and reverse salt flux) by artificial intelligence was considerably better (R > 0.99, root mean square error <5%) than that of conventional mass balance models. A Markov-based decision tree successfully classified the water flux level in hybrid systems. An optimal set of operational conditions for each membrane system was proposed. For example, in RO, a combination of the feed solution (FS) flow rate (≥17.5 L/min), FS concentration (<17,500 ppm), and operation pressure (<35 bar) would result in high water permeability (>40 LMH). In addition, five SWFO elements and four PFFO elements should be the optimal numbers of FO membranes in the hybrid FO-RO system for effective seawater desalination, especially for long-term operation.

3.
Water Res ; 224: 119063, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36122446

ABSTRACT

While a variety of chemical cleaning strategies has been studied to control fouling in membrane-based water treatment processes, the removal of irreversible foulants strongly bound on membrane surfaces has not been successful. In this study, we firstly investigated the diluted aqueous solutions of ionic fluid (IF, 1-ethyl-3-methylimidazolium acetate) as a cleaning agent for three model organic foulants (humic acid, HA; bovine serum albumin, BSA; sodium alginate, SA). The real-time monitoring of cleaning progress by optical coherence tomography (OCT) showed that fouling layer was dramatically swelled by introducing IF solution and removed by shear force exerted during cleaning. This phenomenon was induced due to the pre-existing interactions between organic foulants were weakened by the intrusion of IF into the fouling layer, which was analyzed by the measurement of adhesion forces using atomic force microscopy (AFM). In the experiments with model foulants and wastewater effluent, IF was added to alkaline cleaning agents (NaOH) to verify the applicability to be supplemented in commercial cleaning agents, and resulted in the significantly enhanced control of irreversible membrane fouling. Implication of utilizing recyclable IF with negligible volatility is that environmental effects of membrane cleaning solutions could be minimized by decreasing usage of cleaning chemicals, while increasing the cleaning efficiency.


Subject(s)
Wastewater , Water Purification , Alginates , Humic Substances , Membranes, Artificial , Osmosis , Serum Albumin, Bovine , Sodium Hydroxide , Water Purification/methods
4.
J Environ Manage ; 318: 115544, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35749902

ABSTRACT

Currently, forward osmosis (FO) is widely studied for wastewater treatment and reuse. However, there are still challenges which need to be addressed for the application of the FO on a commercial scale. In the meantime, with a strong capability to solve the complicated nonlinear relationships and to examine of the relations between multiple variables, artificial intelligence (AI) technique could be a viable tool to improve FO system performance to make it more applicable. This study aims to develop an AI-based model for supporting early control and making decision in the FO membrane system. The results show that the artificial neural networks model is extremely suitable for prediction of water flux, membrane fouling, and removal efficiencies. The most appropriate input dataset for the model was proposed, in which organic matters, sodium ion, and calcium ion concentrations played a vital role in all predictions. The best model architecture was suggested with an optimal hidden layers (2-4 layers), and neurons (10-15 neurons). The developed models for membrane fouling show strong correlation between experimental and predicted data (with R2 values for prediction of membrane fouling porosity, thickness, roughness, and density were 0.85, 0.97, 0.97, and 0.98, respectively). The prediction of water flux presented a high R2 and low root mean square error (RMSE) of 0.92 and 0.9 L m-2.h-1, respectively. Prediction of the contaminant removal exhibits a relatively high correlation between the observed and predicted data with R2 values of 0.87 and RMSE values of below 2.7%. The developed models are expected to create a breakthrough in the control and enhancement in a novel FO membrane process used for wastewater treatment by providing us with actionable insights to produce fit-for-future systems in the context of sustainable development.


Subject(s)
Wastewater , Water Purification , Artificial Intelligence , Membranes, Artificial , Osmosis , Water , Water Purification/methods
5.
Bioresour Technol ; 351: 126972, 2022 May.
Article in English | MEDLINE | ID: mdl-35276379

ABSTRACT

This study investigated the behaviour and simulation of low-molecular-weight (low-MW) micropollutants (MPs) in a powdered activated carbon (PAC)-assisted fertiliser-drawn OMBR. 10% increase in water recovery and two times thinner fouling layer were observed in OMBR with addition of 100 mg-PAC/g-MLSS. This amount of PAC also boosted the richness and diversity in microbial community (Chao1 and Shannon index increased 1.5 times). Nearly 100% low-MW MPs were eliminated in PAC-OMBR, while 2-80% was achieved with traditional OMBR. This reduced the pathway of low-MW MPs into diluted fertiliser from 47% to < 1% of the total influent mass. Hydrophilicity played the crucial role in the removal of low-MW MPs, especially acetaminophen and nonylphenol. Neural network was suitable for the simulation of MP behaviour with high accuracy (R = 0.98, RMSE = 4.7%). The findings support safer and cleaner use of the diluted fertiliser and promote a cost-effective tool for real-time analysis of MP behaviour.


Subject(s)
Charcoal , Water Purification , Bioreactors , Fertilizers , Membranes, Artificial , Osmosis , Powders
6.
Environ Sci Technol ; 55(10): 6984-6994, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33949853

ABSTRACT

A new optimized ultraviolet (UV) technique induced a photooxidation surface modification on thin-film composite (TFC) polyamide (PA) brackish water reverse osmosis (BWRO) membranes that improved membrane performance (i.e., permeability and organic fouling propensity). Commercial PA membranes were irradiated with UV-B light (285 nm), and the changes in the membrane performance were assessed through dead-end and cross-flow tests. UV-B irradiation at 12 J·cm-2 enhanced the pure water permeability by 34% in the dead-end tests without decreasing the mono- or divalent ion rejections, as compared with the pristine PA membrane, and led to less fouling by natural organic matter in the cross-flow tests. Scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirmed that UV-B irradiation opened the pore structure and created carboxylic and amine groups on the PA surface, leading to increased membrane surface charge and hydrophilicity. Thus, an optimal UV-B dose appears to modify only a thin layer of the PA membrane surface, which favorably enhances the membrane performance. UV-B did not alter the structure, flux, or salt rejection for cellulose triacetate (CTA)-based membranes. While other membrane surface modifications include oxidants, strong acids, and bases, the UV-B facile treatment is chemical-free, thus reducing chemical wastes, and easy to apply in roll-to-roll fabrication processes of PA membranes. The results also showed that a low UV irradiation dose could be applied to PA or CTA membranes for disinfection or photocatalytic oxidation.


Subject(s)
Membranes, Artificial , Nylons , Filtration , Osmosis , Permeability
7.
Water Res ; 197: 117098, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33831777

ABSTRACT

Forward osmosis process in emerging technology which can applicable in wastewater reuse and desalination simultaneously. In this study, the development of fouling on the FO membrane surface was monitored in real-time. The investigation of fouling layer physical and chemical characteristics was assessed by performance evaluation and in-depth analysis of fouling layer. Non-invasive visual monitoring and in-depth autopsy, combined with the performance and image analyses provided a better understanding of fouling phenomena. The relative roughness of the fouling layer was correlated with water flux decrease while the fouling layer thickness decreased rapidly when fouling was stabilized. From 66-day operation using the primary wastewater as the feed, membrane fouling development was classified into 4 phases: virgin performance, initial deposition, stabilization and aggregation. With the growing fouling layer and with aggregation, the removal rate of organic matter was reduced from 99 to 70%. Conversely, the removal rate of inorganic matter was maintained at a level higher than 90%. The fractionation of physical and chemical extraction had the following characteristics: TPI>HPI>HPO and HPI>TPI>HPO respectively. Also, low molecular weight and building blocks like organic matter were observed with a high composition ratio of fouling layer. Through the correlation between the process performance, real-time monitoring of fouling layer formation and deep-layer fouling analysis, it was possible to identify the major membrane contaminants and propose process optimization guidelines.


Subject(s)
Wastewater , Water Purification , Autopsy , Membranes, Artificial , Osmosis , Wastewater/analysis
8.
Environ Pollut ; 280: 116878, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33774543

ABSTRACT

Trace organic compounds (TOrCs) and microplastics (MPs) have been recognized as emerging pollutants that cause severe water pollution related problems due to their non-degradable and bio-accumulative nature. Many studies on oxidation processes such as ozone have been conducted to efficiently remove TOrCs in water treatment. However, there has been a lack of research on the removal efficiency of TOrCs in the oxidation process when they co-exist with MPs and form transformation byproducts (TBPs) during this process. This study evaluates the effects of MPs on TOrC removal during ozonation at various ozone concentrations and based on the mass of MP particles in distilled water. The adsorption of TBPs and TOrCs was also evaluated using the Freundlich and Langmuir isotherm equations. The toxicity of these compounds was evaluated to confirm the risk to aquatic ecosystems. The results show that triclosan (TCS) had the highest absorption capacity amongst the TOrCs and TBPs tested. Polyvinylchloride exhibited the highest adsorption efficiency compared with polyethylene and polyethyleneterephthalate (TCS 0.341 mg/g) due to its high adsorption capacity and hydrophobicity. In the toxicity test, 2,4-dichlorophenol and 4-chloroaniline as TBPs had a relatively higher toxicity to Vibrio fischeri (a marine bacterial species) than Daphnia magna (a freshwater plankton species).


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Adsorption , Animals , Ecosystem , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Chemosphere ; 275: 130047, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33647679

ABSTRACT

Monitoring fouling behavior for better understanding and control has recently gained increasing attention. However, there is no practical method for observing membrane fouling in real time, especially in the forward osmosis (FO) process. In this article, we used the optical coherence tomography (OCT) technique to conduct real-time monitoring of the membrane fouling layer in the FO process. Fouling tendency of the FO membrane was observed at four distinguished stages for 21 days using a regular membrane cleaning method. In this method, chemical cleaning, which extracts two to three times as much organic matter (OM) as physical cleaning, was used as an effective method. Real-time OCT image observations indicated that a thin, dense, and flat fouling layer was formed (initial stage). On the other hand, a fouling layer with a thick and rough surface was formed later (final stage). A deep learning convolutional neural network model was developed to predict membrane fouling characteristics based on a dataset of real-time fouling images. The model results show a very high correlation between the predicted data and the actual data. R2 equals 0.90, 0.86, 0.92, and 0.90 for the thickness, porosity, roughness, and density of the fouling layer, respectively. As a promising approach, real-time monitoring of fouling layers on the surface of FO membranes and the prediction of fouling layer characteristics using deep learning models can characterize and control membrane fouling in FO and other membrane processes.


Subject(s)
Deep Learning , Water Purification , Membranes, Artificial , Osmosis , Wastewater
10.
Water Res ; 194: 116929, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33640755

ABSTRACT

Forward osmosis is an energy efficient process that is capable of recovering high-quality water from secondary wastewater treatment. However, regeneration of the draw solution (DS) is a problem that needs to be addressed. Herein, we developed and optimized a one-step process that does not require additional treatment for the DS. This process, called pressure assisted-volume retarded osmosis (PA-VRO), utilizes naturally occurring pressure with the aid of a small inlet pressure (< 1 bar). Poly(styrenesulfonate) was employed as the DS, for its high solubility in water and large molecular size (∼70,000 Da). Accordingly, real wastewater was employed as the feed solution for 48 h to remove perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) through PA-VRO. The rejection rates for PFOA/PFOS and poly(sodium-4-styrenesulfonate) (PSS) were observed to exceed 98%, after 24 h and 99%, after 48 h. Moreover, there were no traceable amounts of PFOA/PFOS in the DS, and hence the detected concentrations of PFOA and PFOS can be attributed to the residuals from the equipment. Therefore, this well-optimized PA-VRO process can be utilized for potable water production from treated wastewater.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Purification , Caprylates , Osmosis , Wastewater
11.
Chemosphere ; 272: 129872, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33581566

ABSTRACT

This study investigates a novel hybrid configuration of an osmotic membrane bioreactor-clarifier (OMBRC) to achieve the simultaneous reduction of salt accumulation and membrane fouling. Compared with the conventional OMBR, the OMBRC demonstrated 14 times lower conductivity after 40 d of operation, achieving maximum values exceeding 25,000 and 1800 µS/cm, respectively. The average water flux and flux recovery were approximately 3 and 6 times higher in the OMBRC than in the OMBR, respectively. The ammonium, total organic carbon, and total nitrogen removals of the combined system were measured to be 15%, 11% and 7% higher in the hybrid OMBRC process than in the OMBR, respectively. The hybrid process also reduced the foulant layer thickness in this system to only 15 µm compared with 28 µm in the OMBR. An artificial intelligence-based model was successfully developed for long-term prediction, indicating that the advantages afforded by the hybrid OMBRC can be maintained over long periods of operation with 22 times lower conductivity and 5 times higher water flux compared with the OMBR. A longer lifespan of FO membrane is also predicted in the OMBRC compared to that in the OMBR with the replacements are recommended at 100th and 40th day, respectively.


Subject(s)
Deep Learning , Water Purification , Artificial Intelligence , Bioreactors , Membranes, Artificial , Osmosis , Wastewater
12.
Environ Res ; 194: 110597, 2021 03.
Article in English | MEDLINE | ID: mdl-33316231

ABSTRACT

Perfluorinated chemical (PFC)-based materials have been widely applied in industry. In this study, the influence of PFCs on the physicochemical properties of membranes and that of the co-existence of organic matter and microplastics on the removal rate in the process of forward osmosis (FO) was examined. The water flux, reverse salt flux, and rejection of PFCs were evaluated under w and w/o contaminants. The lowest rejection rates of PFCs in FO membranes were observed to be 92.2% and 90.4% for FO-TFC and PA-Aqua FO membranes, respectively. The main rejection mechanism of the FO membrane is the sieving effect (p-value: PA-TFC-0.015, PA-Aqua-0.002) based on molecular volume, which is more dominant than the electrostatic repulsive force and hydrophobic interaction, the major rejection mechanisms of existing trace contaminants. In addition, we observed that the effects of co-existing pollutants in raw water have an insignificant effect on the rejection of PFCs because of the physical and chemical stability of PFCs. According to the results of this study, using the FO membrane, PFCs can effectively control not only their self-existence but also when contaminants co-exist with them in water bodies.


Subject(s)
Microplastics , Water Purification , Membranes, Artificial , Osmosis , Plastics
13.
Chemosphere ; 269: 129361, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33383251

ABSTRACT

This study examined an electrochemical method of H2 production and nutrient recovery from synthetic source separated urine (SSU). The efficacy of H2 production was examined through hydrogen recovery experiments (HRE) using Ni foam electrodes. Similarly, nutrient (N and P) recovery was also examined in post-nutrient recovery experiments (NRE) with sacrificial Mg electrodes. To achieve higher nutrient recovery in the post-nutrient recovery process, the most important operating parameters (initial solution pH (pHi) and current density) were optimized. Optimization of NRE revealed that > 90% NH3-N and PO43--P could be recovered at 8 mA cm-2 with a pHi of 6-8. Notable NH3-N and PO43--P reduction were observed at an equimolar Mg2+ dissolution ratio (1:1) of Mg2+:NH4+ and a 1.1:1 ratio of Mg2+:PO43- respectively. However, poor total Kjeldahl nitrogen (TKN) reduction was observed. Thus, we anticipate that direct electrochemical conversion of urea to N2 at the anode followed by H2 generation at the cathode is a more sustainable way to reduce TKN. Batch HRE showed that the initial TKN, 1094 mg L-1 (934 mg L-1 from urea-N and 160 mg L-1 from NH4Cl), was significantly reduced to 360 mg L-1 by Ni-Ni electrolysis, whereas around 53.8 g H2 gas was received from this Ni-Ni electrolysis system with a flow rate of 5-5.8 g mol-1 day-1. Overall, this work produced a 68% reduction in TKN due to electrochemical conversion of urea into H2.


Subject(s)
Electrolysis , Water , Electrodes , Nitrogen , Nutrients
14.
J Hazard Mater ; 396: 122736, 2020 09 05.
Article in English | MEDLINE | ID: mdl-32361625

ABSTRACT

This study investigated the feasibility of applying a thin film composite (TFC) forward osmosis (FO) membrane in the dewatering of activated sludge (AS). Membrane fouling was investigated and controlled to enhance the system's performance. Investigations showed that the TFC FO membrane provided a water flux that was 120 % higher and a concentration factor that was three times higher compared to a cellulose tri-acetate (CTA) membrane. The foulant layer on the TFC membrane surface was mostly irreversible when 1.44 mg-C/cm2 and 0.13 mg-C/cm2 dissolved organic carbon (DOC) were extracted in sodium hydroxide (NaOH) and deionized (DI) water, respectively. The results of principle component analysis (PCA) revealed that among the operating conditions, the amount of aromatic organic compounds (indicated by UV254 values) followed by their hydrophilicity (specific ultraviolet absorbance (SUVA) indices) were the dominant factors controlling the different fouling potentials. SUVA value indices ranged from 0.4 to 0.6 L/m-mg DOC, illustrating that hydrophilic compounds were more responsible for membrane fouling than hydrophobic components. These results implied that aromatic and hydrophilic substances, in particular protein and polysaccharides were key components of the fouling layers, which need to be considered to enable a reduction of membrane fouling. We thus employed several novel fouling control methods, in which the combination of mono-chloramine pre-treatment and membrane cleaning by NaOH resulted in the recovery up to 86 % of the water from raw AS.

15.
Environ Res ; 180: 108866, 2020 01.
Article in English | MEDLINE | ID: mdl-31703977

ABSTRACT

In general, cartridge filters (CFs) are installed before reverse osmosis systems as a safeguard to minimize fouling of the reverse osmosis membrane in seawater desalination plants. Depending on the retention time of microorganisms and various fouling matter in the storage tank, pipe, and filter housing, serious fouling of the CF may occur, decreasing its lifetime. More importantly, biofouling of CFs in a continuous process can have a significant impact on reverse osmosis membrane fouling. Few studies related to CF fouling and control have been undertaken due to the low cost of CFs. Herein, comparative evaluation of optical density (O.D) for Cl2 and ClO2 was performed to investigate the efficiency of biofouling control and for developing alternative disinfection processes because the chemistry and reactivity of ClO2 differ from those of Cl2. The results showed that the concentrations of Cl2 and ClO2 required to achieve a log reduction value of 2 for the live bacterial cells with 180 min of contact time were 1.5 and 0.6 mg L-1, respectively. Both Cl2 and ClO2 were effective for the control of organic matter and particles. However, the required Cl2 concentration (1.5 mg L-1) was 2.5 times higher than that of ClO2 (0.6 mg L-1). Surface analysis and economic evaluation of the CF showed that ClO2 has higher biofouling control ability than Cl2 and is more economical, at a current cost of $ 23,667 during seawater desalination plant duration.


Subject(s)
Biofouling , Water Purification , Chlorine , Chlorine Compounds , Membranes, Artificial , Osmosis , Oxides , Seawater
16.
Chemosphere ; 232: 264-272, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31154187

ABSTRACT

Recovery of heavy metals in acid mine drainage (AMD) such as Mn, Fe, Cu, Zn, As, Cd and Pb was evaluated using volume retarded osmosis and low-pressure membrane (VRO-LPM) process. In VRO-LPM process, the draw solution (DS) is regenerated by the naturally generated pressure, giving its economic value. Ethylenediaminetetraacetic acid tetrasodium salt (EDTA-4Na) and Poly (sodium-4-styrenesulfonate, PSS-Na) were used and compared to determine more suitable DS in heavy metal recovery from the AMD. Forward osmosis (FO) and nanofiltration (NF) membrane were employed in VRO-LPM process, due to the low EDTA-4Na rejection (about 50%) in ultrafiltration (UF) process. For the FO part in the VRO-LPM process, PSS-Na had flux values of 0.12, 0.11 and 0.05 L m-2 h-1 and at osmotic pressure of 8.9, 12 and 13 bar, respectively. Unlike the flux values, the RSF of PSS remained at 0.01 mmol h-1 at all osmotic pressures. For EDTA-4Na, the flux values were 0.10, 0.06 and 0.04 L m-2 h-1, which are relatively higher than those of PSS-Na; and the RSF values were 0.1, 1.2, 2.2 mmol h-1, which are higher compared to those of PSS-Na. Unlike PSS-Na, RSF for EDTA-4Na increased as the concentration increases. In the NF part of the VRO-LPM process, PSS-Na had higher water flux and rejection than EDTA-4Na, and the flux and rejection both decreased with concentration for both PSS-Na and EDTA-4Na. The overall rejection in VRO-LPM process was over 95% for all heavy metal ions. Therefore, VRO-LPM process has proven its ability to be used in AMD treatment for heavy metal removal.


Subject(s)
Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Membranes, Artificial , Osmosis , Osmotic Pressure , Pressure , Ultrafiltration , Water
17.
Chemosphere ; 219: 261-267, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30543961

ABSTRACT

This study evaluated the treatment of acid whey through a volume-retarded osmosis-low-pressure membrane (VRO-LPM) hybrid process. The VRO-LPM process uses pressure naturally generated inside the closed draw solution (DS) tank to regenerate the DS, making it an economic process. Poly (sodium-4-styrenesulfonate) (PSS) and carboxymethyl cellulose (CMC) were compared to determine which was a more suitable DS for acid whey treatment. Forward osmosis (FO) and ultrafiltration (UF) membranes were used in the VRO-LPM hybrid process because a single UF process showed high water flux and rejection efficiencies above 85% for both PSS and CMC. In both the FO and UF parts of the VRO-LPM process, PSS had a higher water flux than CMC. However, the increasing rate of the feed solution (FS) for CMC was greater than that of PSS, however the overall rejection efficiencies were similar for both DS. Therefore, the VRO-LPM process can be applied to acid whey treatment, and CMC seems to be a better choice of DS than PSS because of its higher concentrating ratio of FS and high overall rejection.


Subject(s)
Osmosis/physiology , Whey/chemistry
18.
Chemosphere ; 194: 76-84, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29197818

ABSTRACT

A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL-1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.


Subject(s)
Membranes, Artificial , Osmosis , Water Purification/methods , Drinking Water , Pressure , Ultrafiltration
19.
Sci Rep ; 7(1): 14569, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109434

ABSTRACT

We tested the possibility of energy-saving water treatment methods by using a pump-less forward osmosis (FO) and low-pressure membrane (LPM) hybrid process (FO-LPM). In this pump-less FO-LPM, permeate migrates from the feed solution (FS) to the draw solution (DS) through the FO membrane by use of osmotic pressure differences. At the same time, within the closed DS tank, inner pressure increases as the DS volume increases. By using the DS tank's internal pressure, the LPM process works to re-concentrate the diluted DS, maintaining the DS concentration and producing clean water. In this study, a polymer - polystyrene sulfonate (PSS) was used as a draw solute. Based on the results of each individual portion of the process, the optimal range of the PSS DS was determined. The performance of the pump-less FO-LPM process was lower than that of a single process; however, we observed that the hybrid process can be operated without a pump for regeneration of a diluted DS. This research highlights the feasibility and applicability of pump-less FO-LPM processes using a polymeric DS for water treatment. Additionally, it is suggested that this novel process offers a breakthrough in FO technology that is often limited by operation and management cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...