Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 150(14)2023 07 15.
Article in English | MEDLINE | ID: mdl-37376880

ABSTRACT

Temporal transcription profiles of fetal testes with Sertoli cell ablation were examined in 4-day culture using a diphtheria toxin (DT)-dependent cell knockout system in AMH-TRECK transgenic (Tg) mice. RNA analysis revealed that ovarian-specific genes, including Foxl2, were ectopically expressed in DT-treated Tg testis explants initiated at embryonic days 12.5-13.5. FOXL2-positive cells were ectopically observed in two testicular regions: near the testicular surface epithelia and around its adjacent mesonephros. The surface FOXL2-positive cells, together with ectopic expression of Lgr5 and Gng13 (markers of ovarian cords), were derived from the testis epithelia/subepithelia, whereas another FOXL2-positive population was the 3ßHSD-negative stroma near the mesonephros. In addition to high expression of Fgfr1/Fgfr2 and heparan sulfate proteoglycan (a reservoir for FGF ligand) in these two sites, exogenous FGF9 additives repressed DT-dependent Foxl2 upregulation in Tg testes. These findings imply retention of Foxl2 inducibility in the surface epithelia and peri-mesonephric stroma of the testicular parenchyma, in which certain paracrine signals, including FGF9 derived from fetal Sertoli cells, repress feminization in these two sites of the early fetal testis.


Subject(s)
Sertoli Cells , Testis , Mice , Animals , Male , Female , Sertoli Cells/metabolism , Testis/metabolism , Mice, Transgenic , Ovary , Fetus
2.
Nat Commun ; 13(1): 7860, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543770

ABSTRACT

Seminiferous tubules (STs) in the mammalian testes are connected to the rete testis (RT) via a Sertoli valve (SV). Spermatozoa produced in the STs are released into the tubular luminal fluid and passively transported through the SV into the RT. However, the physiological functions of the RT and SV remain unclear. Here, we identified the expression of Sox17 in RT epithelia. The SV valve was disrupted before puberty in RT-specific Sox17 conditional knockout (Sox17-cKO) male mice. This induced a backflow of RT fluid into the STs, which caused aberrant detachment of immature spermatids. RT of Sox17-cKO mice had reduced expression levels of various growth factor genes, which presumably support SV formation. When transplanted next to the Sox17+ RT, Sertoli cells of Sox17-cKO mice reconstructed the SV and supported proper spermiogenesis in the STs. This study highlights the novel and unexpected modulatory roles of the RT in SV valve formation and spermatogenesis in mouse testes, as a downstream action of Sox17.


Subject(s)
Rete Testis , SOXF Transcription Factors , Sexual Maturation , Spermatogenesis , Animals , Male , Mice , Epithelium , HMGB Proteins/metabolism , Mammals , Mice, Knockout , Rete Testis/metabolism , Sertoli Cells/metabolism , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Spermatogenesis/genetics , Testis/metabolism
3.
Int J Mol Sci ; 23(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36362161

ABSTRACT

In most mammals, the sex of the gonads is based on the fate of the supporting cell lineages, which arises from the proliferation of coelomic epithelium (CE) that surfaces on the bipotential genital ridge in both XY and XX embryos. Recent genetic studies and single-cell transcriptome analyses in mice have revealed the cellular and molecular events in the two-wave proliferation of the CE that produce the supporting cells. This proliferation contributes to the formation of the primary sex cords in the medullary region of both the testis and the ovary at the early phase of gonadal sex differentiation, as well as to that of the secondary sex cords in the cortical region of the ovary at the perinatal stage. To support gametogenesis, the testis forms seminiferous tubules in the medullary region, whereas the ovary forms follicles mainly in the cortical region. The medullary region in the ovary exhibits morphological and functional diversity among mammalian species that ranges from ovary-like to testis-like characteristics. This review focuses on the mechanism of gonadal sex differentiation along the cortical-medullary axis and compares the features of the cortical and medullary regions of the ovary in mammalian species.


Subject(s)
Ovary , Sex Differentiation , Male , Female , Mice , Animals , Sex Differentiation/genetics , Gonads , Testis , Organogenesis , Mammals
4.
PLoS One ; 14(3): e0212367, 2019.
Article in English | MEDLINE | ID: mdl-30840652

ABSTRACT

In most of mammalian embryos, gonadal sex differentiation occurs inside the maternal uterus before birth. In several fetal ovarian grafting experiments using male host mice, an experimental switch from the maternal intrauterine to male-host environment gradually induces partial masculinization of the grafted ovaries even under the wild-type genotype. However, either host-derived factors causing or molecular basis underlying this masculinization of the fetal ovaries are not clear. Here, we demonstrate that ectopic appearance of SOX9-positive Sertoli cell-like cells in grafted ovaries was mediated by the testosterone derived from the male host. Neither Sox8 nor Amh activity in the ovarian tissues is essential for such ectopic appearance of SOX9-positive cells. The transcriptome analyses of the grafted ovaries during this masculinization process showed early downregulation of pro-ovarian genes such as Irx3, Nr0b1/Dax1, Emx2, and Fez1/Lzts1 by days 7-10 post-transplantation, and subsequent upregulation of several pro-testis genes, such as Bhlhe40, Egr1/2, Nr4a2, and Zc3h12c by day 20, leading to a partial sex reversal with altered expression profiles in one-third of the total numbers of the sex-dimorphic pre-granulosa and Sertoli cell-specific genes at 12.5 dpc. Our data imply that the paternal testosterone exposure is partially responsible for the sex-reversal expression profiles of certain pro-ovarian and pro-testis genes in the fetal ovaries in a temporally dependent manner.


Subject(s)
Ovary/metabolism , Sex Determination Processes/genetics , Sex Differentiation/genetics , Animals , Female , Gonads/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , SOX9 Transcription Factor/genetics , SOXE Transcription Factors/genetics , Sertoli Cells/metabolism , Testis/metabolism , Transcriptome/genetics , Up-Regulation/genetics
5.
J Reprod Dev ; 64(3): 283-287, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29657232

ABSTRACT

Mammalian zygote-mediated genome editing via the clustered regularly interspaced short palindromic repeats/CRISPR-associated endonuclease 9 (CRISPR/Cas9) system is widely used to generate genome-modified animals. This system allows for the production of loss-of-function mutations in various Y chromosome genes, including Sry, in mice. Here, we report the establishment of a CRISPR-Cas9-mediated knock-in line of Flag-tag sequences into the Sry locus at the C-terminal coding end of the Y chromosome (YSry-flag). In the F1 and successive generations, all male pups carrying the YSry-flag chromosome had normal testis differentiation and proper spermatogenesis at maturity, enabling complete fertility and the production of viable offspring. To our knowledge, this study is the first to produce a stable Sry knock-in line at the C-terminal region, highlighting a novel approach for examining the significance of amino acid changes at the naive Sry locus in mammals.


Subject(s)
CRISPR-Cas Systems , Genes, sry , Sex-Determining Region Y Protein/genetics , Animals , Gene Editing , Male , Mice , Testis/metabolism
6.
Development ; 144(10): 1906-1917, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28432216

ABSTRACT

The gallbladder excretes cytotoxic bile acids into the duodenum through the cystic duct and common bile duct system. Sox17 haploinsufficiency causes biliary atresia-like phenotypes and hepatitis in late organogenesis mouse embryos, but the molecular and cellular mechanisms underlying this remain unclear. In this study, transcriptomic analyses revealed the early onset of cholecystitis in Sox17+/- embryos, together with the appearance of ectopic cystic duct-like epithelia in their gallbladders. The embryonic hepatitis showed positive correlations with the severity of cholecystitis in individual Sox17+/- embryos. Embryonic hepatitis could be induced by conditional deletion of Sox17 in the primordial gallbladder epithelia but not in fetal liver hepatoblasts. The Sox17+/- gallbladder also showed a drastic reduction in sonic hedgehog expression, leading to aberrant smooth muscle formation and defective contraction of the fetal gallbladder. The defective gallbladder contraction positively correlated with the severity of embryonic hepatitis in Sox17+/- embryos, suggesting a potential contribution of embryonic cholecystitis and fetal gallbladder contraction in the early pathogenesis of congenital biliary atresia.


Subject(s)
Biliary Atresia , Cholecystitis/embryology , Gallbladder/embryology , HMGB Proteins/genetics , Muscle Contraction/genetics , Muscle, Smooth/embryology , SOXF Transcription Factors/genetics , Animals , Biliary Atresia/embryology , Biliary Atresia/genetics , Biliary Atresia/pathology , Cells, Cultured , Cholecystitis/genetics , Disease Models, Animal , Embryo, Mammalian , Female , Gallbladder/metabolism , Gallbladder/physiology , Haploinsufficiency , Hedgehog Proteins/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth/physiology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL