Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Biosci Bioeng ; 133(5): 502-508, 2022 May.
Article in English | MEDLINE | ID: mdl-35246394

ABSTRACT

Induced pluripotent stem (iPS) cells have been widely studied in regenerative medicine, pathology modeling, and drug screening. Stable mass culture of iPS cells is essential for these applications. iPS cells can spontaneously differentiate into other cells during culture, and removal of these differentiated cells is necessary. Herein, a cost-effective culture method suitable for mass culture and a detailed analysis of the selective detachment of iPS cells are presented. A simple method for coating the water-insoluble thermoresponsive polymer poly (butyl methacrylate-block-N-isopropylacrylamide) on commercially available polystyrene dishes was employed. Analysis of the effects of the polymer composition, coating thickness, and surface structure on iPS cell culture/detachment showed that a coating thickness of approximately 10-40 nm using a polymer with a high poly (N-isopropylacrylamide) content was suitable for iPS cell detachment. Moreover, an interesting change in surface morphology was observed following temperature variation, thereby affecting laminin adsorption. Second, selective detachment in cocultures of iPS cells and differentiated cells enabled collection of iPS cells with more than 98% purity. Finally, long-term iPS cell culture was conducted using temperature-responsive cell detachment. Overall, long-term maintenance-free culture of iPS cells was possible without manual removal of differentiated cells.


Subject(s)
Pluripotent Stem Cells , Polymers , Acrylamides , Cell Adhesion , Methacrylates , Polymers/chemistry , Temperature , Water
2.
Lab Chip ; 21(10): 1897-1907, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34008665

ABSTRACT

Engineered three-dimensional models of neuromuscular tissues are promising for use in mimicking their disorder states in vitro. Although several models have been developed, it is still challenging to mimic the physically separated structures of motor neurons (MNs) and skeletal muscle (SkM) fibers in the motor units in vivo. In this study, we aimed to develop microdevices for precisely compartmentalized coculturing of MNs and engineered SkM tissues. The developed microdevices, which fit a well of 24 well plates, had a chamber for MNs and chamber for SkM tissues. The two chambers were connected by microtunnels for axons, permissive to axons but not to cell bodies. Human iPSC (hiPSC)-derived MN spheroids in one chamber elongated their axons into microtunnels, which reached the tissue-engineered human SkM in the SkM chamber, and formed functional neuromuscular junctions with the muscle fibers. The cocultured SkM tissues with MNs on the device contracted spontaneously in response to spontaneous firing of MNs. The addition of a neurotransmitter, glutamate, into the MN chamber induced contraction of the cocultured SkM tissues. Selective addition of tetrodotoxin or vecuronium bromide into either chamber induced SkM tissue relaxation, which could be explained by the inhibitory mechanisms. We also demonstrated the application of chemical or mechanical stimuli to the middle of the axons of cocultured tissues on the device. Thus, compartmentalized neuromuscular tissue models fabricated on the device could be used for phenotypic screening to evaluate the cellular type specific efficacy of drug candidates and would be a useful tool in fundamental research and drug development for neuromuscular disorders.


Subject(s)
Lab-On-A-Chip Devices , Motor Neurons , Humans , Muscle Fibers, Skeletal , Muscle, Skeletal , Neuromuscular Junction
3.
Article in English | MEDLINE | ID: mdl-33274679

ABSTRACT

Nucleic acids in body fluids, such as circulating cell-free nucleic acids, viral DNA, and RNA have received much attention for their great potential as biomarkers in liquid biopsies of serious diseases. Although quantitative polymerase chain reaction (qPCR) has been traditionally used as a laboratory-based assay for measuring nucleic acids, there is a strong demand for techniques to qualitatively, rapidly, and simply measure the extremely low-abundance nucleic acids in order to realize the nucleic acid-based liquid biopsies. With this aim in mind, we developed a simple and highly sensitive sandwich-type assay for nucleic acids using a combination of surface-enhanced Raman scattering (SERS), which enhances Raman scattering by 108- to 1010-fold, and bioorthogonal Raman tags, which generate signals in the biologically silent region (1800-2800 cm-1). Using gold nanorods having approximately 240 strands of oligonucleotides and 4-cyano-N-(2-mercaptoethyl)benzamide (4CMB) as the bioorthogonal Raman tag, we successfully detected target nucleic acids in a sequence-selective manner.


Subject(s)
DNA/analysis , Spectrum Analysis, Raman/methods , DNA/chemistry , Gold/chemistry , Microspheres , Nanotubes/chemistry , Nucleic Acid Hybridization , Sepharose/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL