Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687676

ABSTRACT

Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and ßII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCßII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.


Subject(s)
NIMA-Interacting Peptidylprolyl Isomerase , Protein Binding , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Humans , Protein Kinase C/metabolism , Protein Kinase C/chemistry , Protein Kinase C/genetics , Protein Conformation
2.
ACS Sustain Chem Eng ; 12(7): 2678-2685, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38389905

ABSTRACT

1,4-Benzoxazines are important motifs in many pharmaceuticals and can be formed by a reaction sequence involving the oxidation of o-aminophenols to their corresponding quinone imine followed by an in situ inverse electron demand Diels-Alder (IEDDA) cycloaddition with a suitable dienophile. Reported herein is the development of a reaction sequence that employs horseradish peroxidase to catalyze the oxidation of the aminophenols prior to the IEDDA as a more sustainable alternative to the use of conventional stoichiometric oxidants. The synthesis of 10 example benzoxazines is demonstrated in this "one-pot, two-step" procedure with yields between 42% and 92%. The green chemistry metrics, including the E-factor and generalized reaction mass efficiency, for this biocatalytic reaction were compared against the conventional chemical approach. It was found that the reported biocatalytic route was approximately twice as green by these measures.

3.
Molecules ; 26(16)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34443378

ABSTRACT

Ionic liquids have unique chemical properties that have fascinated scientists in many fields. The effects of adding ionic liquids to biocatalysts are many and varied. The uses of ionic liquids in biocatalysis include improved separations and phase behaviour, reduction in toxicity, and stabilization of protein structures. As the ionic liquid state of the art has progressed, concepts of what can be achieved in biocatalysis using ionic liquids have evolved and more beneficial effects have been discovered. In this review ionic liquids for whole-cell and isolated enzyme biocatalysis will be discussed with an emphasis on the latest developments, and a look to the future.


Subject(s)
Biocatalysis , Cells/metabolism , Enzymes/isolation & purification , Ionic Liquids/chemistry , Solubility
4.
Metallomics ; 10(12): 1814-1823, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30444224

ABSTRACT

Four highly similar genes (W08E12.2, W08E12.3, W08E12.4 and W08E12.5) which are consecutively aligned on chromosome IV of the C. elegans genome are predicted to code for small (120-141aa) yet cysteine rich (18-19 cysteines) proteins. Cloning and sequencing of the genomic regions of the isoforms confirmed the presence and order of all genes. The generation of transgenic worms strains with an integrated single copy or extrachromosomal multi-copy PW08E12.3;W08E12.4::GFP uncovered that W08E12.3 and W08E12.4 are constitutively expressed in the pharynx and significantly induced in worms exposed to 100 µM Zn. Knockdown by RNAi did not have a marked consequence on reproductive performance nor was a Zn-dependent effect on nematode growth observed. However, RNAi of these genes led to an accumulation of Zn in the intestinal cells. W08E12.3 was recombinantly expressed in E. coli and the purified protein was shown to be able to bind up to 6.5 Zn molecules at neutral pH. Zn-binding was acid-labile and the apo protein was observed at pH < 4.3. This characterization suggests W08E12.2, W08E12.3, W08E12.4 and W08E12.5 belong to a family of putative Metalloproteins which, akin to metallothioneins, may play an important role in Zn-sensing, homeostasis and/or detoxification.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Metalloproteins/metabolism , Recombinant Proteins/metabolism , Zinc/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Cloning, Molecular , Metalloproteins/genetics , Mutation , Protein Isoforms , Recombinant Proteins/genetics , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...