Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
Add more filters











Publication year range
1.
Hypertens Res ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39245782

ABSTRACT

All anthracyclines, including doxorubicin (DOXO), the most common and still indispensable drug, exhibit cardiotoxicity with inherent risk of irreversible cardiomyopathy leading to heart failure with reduced ejection fraction (HFrEF). Current pharmacological strategies are clearly less effective for this type of HFrEF, hence an urgent need for new therapeutic approaches. The prerequisite for success is thorough understanding of pathophysiology of this HFrEF form, which requires an appropriate animal model of the disease. The aim of this study was to comprehensively characterise a novel model of HF with cardiorenal syndrome, i.e. DOXO-induced HFrEF with nephrotic syndrome, in which DOXO was administered to Ren-2 transgenic rats (TGR) via five intravenous injections in a cumulative dose of 10 mg/kg of body weight (BW). Our analysis included survival, echocardiography, as well as histological examination of the heart and kidneys, blood pressure, but also a broad spectrum of biomarkers to evaluate cardiac remodelling, fibrosis, apoptosis, oxidative stress and more. We have shown that the new model adequately mimics the cardiac remodelling described as "eccentric chamber atrophy" and myocardial damage typical for DOXO-related cardiotoxicity, without major damage of the peritoneum, lungs and liver. This pattern corresponds well to a clinical situation of cancer patients receiving anthracyclines, where HF develops with some delay after the anticancer therapy. Therefore, this study may serve as a comprehensive reference for all types of research on DOXO-related cardiotoxicity, proving especially useful in the search for new therapeutic strategies.

2.
Kidney Blood Press Res ; 49(1): 69-80, 2024.
Article in English | MEDLINE | ID: mdl-38185105

ABSTRACT

INTRODUCTION: Renal fibrosis is a critical event in the development and progression of chronic kidney disease (CKD), and it is considered the final common pathway for all types of CKD. The prevalence of CKD is higher in females; however, males have a greater prevalence of end-stage renal disease. In addition, low birth weight and low nephron number are associated with increased risk for CKD. This study examined the development and severity of unilateral ureter obstruction (UUO)-induced renal fibrosis in male and female wild-type (ROP +/+) and mutant (ROP Os/+) mice, a mouse model of low nephron number. METHODS: Male and female ROP +/+ and ROP Os/+ mice were subjected to UUO, and kidney tissue was collected at the end of the 10-day experimental period. Kidney histological analysis and mRNA expression determined renal fibrosis, tubular injury, collagen deposition, extracellular matrix proteins, and immune cell infiltration. RESULTS: Male and female UUO mice demonstrated marked renal injury, kidney fibrosis, and renal extracellular matrix production. Renal fibrosis and α-smooth muscle actin were increased to a similar degree in ROP +/+ and ROP Os/+ mice with UUO of either sex. There were also no sex differences in renal tubular cast formation or renal infiltration of macrophage in ROP +/+ and ROP Os/+ UUO mice. Interestingly, renal fibrosis and α-smooth muscle actin were 1.5-3-fold greater in UUO-ROP +/+ compared to UUO-ROP Os/+ mice. Renal inflammation phenotypes following UUO were also 30-45% greater in ROP +/+ compared to ROP Os/+ mice. Likewise, expression of extracellular matrix and renal fibrotic genes was greater in UUO-ROP +/+ mice compared to UUO-ROP Os/+ mice. In contrast to these findings, ROP Os/+ mice with UUO demonstrated glomerular hypertrophy with 50% greater glomerular tuft area compared to ROP +/+ with UUO. Glomerular hypertrophy was not sex-dependent in any of the genotypes of ROP mice. These findings provide evidence that low nephron number contributes to UUO-induced glomerular hypertrophy in ROP Os/+ mice but does not enhance renal fibrosis, inflammation, and renal tubular injury. CONCLUSION: Taken together, we demonstrate that low nephron number contributes to enhanced glomerular hypertrophy but not kidney fibrosis and tubular injury. We also demonstrate that none of the changes caused by UUO was affected by sex in any of the ROP mice genotypes.


Subject(s)
Renal Insufficiency, Chronic , Ureteral Obstruction , Female , Male , Animals , Mice , Ureteral Obstruction/complications , Ureteral Obstruction/metabolism , Actins/metabolism , Sex Characteristics , Kidney/pathology , Renal Insufficiency, Chronic/complications , Inflammation/pathology , Fibrosis , Hypertrophy/pathology , Mice, Inbred C57BL , Disease Models, Animal
4.
Front Physiol ; 14: 1186477, 2023.
Article in English | MEDLINE | ID: mdl-37427406

ABSTRACT

Hypertension characterized by an elevated blood pressure is a cardiovascular disease that afflicts greater than one in every three adults worldwide. Nuclear receptors are large superfamily of DNA-binding transcription factors that target genes to regulate metabolic and cardiovascular function. Drugs have been developed for nuclear receptors such as peroxisome proliferator-activated receptors (PPARα and PPARγ) and farnesoid X receptor (FXR). PPARα, PPARγ, and FXR agonists are used clinically to treat lipid disorders and metabolic diseases. Evidence from clinical studies and animal hypertension models have demonstrated that PPARα, PPARγ, and FXR agonism can lower blood pressure and decrease end organ damage which could be useful for the treatment of hypertension in patients with metabolic diseases. Unfortunately, PPAR and FXR agonists have unwanted clinical side effects. There have been recent developments to limit side effects for PPAR and FXR agonists. Combining PPAR and FXR agonism with soluble epoxide hydrolase (sEH) inhibition or Takeda G protein receptor 5 (TGR5) agonism has been demonstrated in preclinical studies to have actions that would decrease clinical side effects. In addition, these dual modulating drugs have been demonstrated in preclinical studies to have blood pressure lowering, anti-fibrotic, and anti-inflammatory actions. There is now an opportunity to thoroughly test these novel dual modulators in animal models of hypertension associated with metabolic diseases. In particular, these newly developed dual modulating PPAR and FXR drugs could be beneficial for the treatment of metabolic diseases, organ fibrosis, and hypertension.

5.
Adv Pharmacol ; 97: 1-35, 2023.
Article in English | MEDLINE | ID: mdl-37236756

ABSTRACT

Hypertension is a major healthcare issue that afflicts one in every three adults worldwide and contributes to cardiovascular diseases, morbidity and mortality. Bioactive lipids contribute importantly to blood pressure regulation via actions on the vasculature, kidney, and inflammation. Vascular actions of bioactive lipids include blood pressure lowering vasodilation and blood pressure elevating vasoconstriction. Increased renin release by bioactive lipids in the kidney is pro-hypertensive whereas anti-hypertensive bioactive lipid actions result in increased sodium excretion. Bioactive lipids have pro-inflammatory and anti-inflammatory actions that increase or decrease reactive oxygen species and impact vascular and kidney function in hypertension. Human studies provide evidence that fatty acid metabolism and bioactive lipids contribute to sodium and blood pressure regulation in hypertension. Genetic changes identified in humans that impact arachidonic acid metabolism have been associated with hypertension. Arachidonic acid cyclooxygenase, lipoxygenase and cytochrome P450 metabolites have pro-hypertensive and anti-hypertensive actions. Omega-3 fish oil fatty acids eicosapentaenoic acid and docosahexaenoic acid are known to be anti-hypertensive and cardiovascular protective. Lastly, emerging fatty acid research areas include blood pressure regulation by isolevuglandins, nitrated fatty acids, and short chain fatty acids. Taken together, bioactive lipids are key contributors to blood pressure regulation and hypertension and their manipulation could decrease cardiovascular disease and associated morbidity and mortality.


Subject(s)
Cardiovascular Diseases , Hypertension , Adult , Humans , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Hypertension/complications , Sodium , Lipids , Fatty Acids
6.
Front Physiol ; 14: 1159406, 2023.
Article in English | MEDLINE | ID: mdl-36935750
7.
Biochem Pharmacol ; 210: 115438, 2023 04.
Article in English | MEDLINE | ID: mdl-36716827

ABSTRACT

The incidence of ureter obstruction is increasing and patients recovering from this kidney injury often progress to chronic kidney injury. There is evidence that a long-term consequence of recovery from ureter obstruction is an increased risk for salt-sensitive hypertension. A reversal unilateral ureteral obstruction (RUUO) model was used to study long-term kidney injury and salt-sensitive hypertension. In this model, we removed the ureteral obstruction at day 10 in mice. Mice were divided into four groups: (1) normal salt diet, (2) high salt diet, (3) RUUO normal salt diet, and (4) RUUO high salt diet. At day 10, the mice were fed a normal or high salt diet for 4 weeks. Blood pressure was measured, and urine and kidney tissue collected. There was a progressive increase in blood pressure in the RUUO high salt diet group. RUUO high salt group had decreased sodium excretion and glomerular injury. Renal epithelial cell injury was evident in RUUO normal and high salt mice as assessed by neutrophil gelatinase-associated lipocalin (NGAL). Kidney inflammation in the RUUO high salt group involved an increase in F4/80 positive macrophages; however, CD3+ positive T cells were not changed. Importantly, RUUO normal and high salt mice had decreased vascular density. RUUO was also associated with renal fibrosis that was further elevated in RUUO mice fed a high salt diet. Overall, these findings demonstrate long-term renal tubular injury, inflammation, decreased vascular density, and renal fibrosis following reversal of unilateral ureter obstruction that could contribute to impaired sodium excretion and salt-sensitive hypertension.


Subject(s)
Hypertension , Ureteral Obstruction , Mice , Animals , Ureteral Obstruction/complications , Ureteral Obstruction/pathology , Kidney/pathology , Hypertension/complications , Sodium Chloride, Dietary/adverse effects , Sodium , Fibrosis
8.
Front Immunol ; 14: 1269261, 2023.
Article in English | MEDLINE | ID: mdl-38235144

ABSTRACT

Introduction: Renal fibrosis associated with inflammation is a critical pathophysiological event in chronic kidney disease (CKD). We have developed DM509 which acts concurrently as a farnesoid X receptor agonist and a soluble epoxide hydrolase inhibitor and investigated DM509 efficacy as an interventional treatment using the unilateral ureteral obstruction (UUO) mouse model. Methods: Male mice went through either UUO or sham surgery. Interventional DM509 treatment (10mg/kg/d) was started three days after UUO induction and continued for 7 days. Plasma and kidney tissue were collected at the end of the experimental protocol. Results: UUO mice demonstrated marked renal fibrosis with higher kidney hydroxyproline content and collagen positive area. Interventional DM509 treatment reduced hydroxyproline content by 41% and collagen positive area by 65%. Renal inflammation was evident in UUO mice with elevated MCP-1, CD45-positive immune cell positive infiltration, and profibrotic inflammatory gene expression. DM509 treatment reduced renal inflammation in UUO mice. Renal fibrosis in UUO was associated with epithelial-to-mesenchymal transition (EMT) and DM509 treatment reduced EMT. UUO mice also had tubular epithelial barrier injury with increased renal KIM-1, NGAL expression. DM509 reduced tubular injury markers by 25-50% and maintained tubular epithelial integrity in UUO mice. Vascular inflammation was evident in UUO mice with 9 to 20-fold higher ICAM and VCAM gene expression which was reduced by 40-50% with DM509 treatment. Peritubular vascular density was reduced by 35% in UUO mice and DM509 prevented vascular loss. Discussion: Interventional treatment with DM509 reduced renal fibrosis and inflammation in UUO mice demonstrating that DM509 is a promising drug that combats renal epithelial and vascular pathological events associated with progression of CKD.


Subject(s)
Nephritis , Renal Insufficiency, Chronic , Ureteral Obstruction , Male , Mice , Animals , Epoxide Hydrolases , Hydroxyproline , Nephritis/drug therapy , Nephritis/complications , Ureteral Obstruction/complications , Ureteral Obstruction/pathology , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/complications , Inflammation/pathology , Collagen/metabolism , Fibrosis
10.
Front Physiol ; 13: 879617, 2022.
Article in English | MEDLINE | ID: mdl-36035475
11.
Adv Pharmacol ; 94: 27-55, 2022.
Article in English | MEDLINE | ID: mdl-35659375

ABSTRACT

Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites synthesized by cytochrome P450 epoxygenases. Biological activities for EETs include vasodilation, decreasing inflammation, opposing apoptosis, and inhibiting renal sodium reabsorption. These actions are beneficial in lowering blood pressure and slowing kidney disease progression. Furthermore, evidence in human and experimental animal studies have found that decreased EET levels contribute to hypertension and kidney diseases. Consequently, EET mimics/analogs have been developed as a potential therapeutic for hypertension and acute and chronic kidney diseases. Their development has resulted in EET analogs that are orally active with favorable pharmacological profiles. Analogs for 8,9-EET, 11,12-EET, and 14,15-EET have been tested in several hypertension and kidney disease animal models. More recently, kidney targeted EET analogs have been synthesized and tested against drug-induced nephrotoxicity. Experimental evidence has demonstrated compelling therapeutic potential for EET analogs to oppose cardiovascular and kidney diseases. These EET analogs lower blood pressure, decrease kidney inflammation, improve vascular endothelial function, and decrease kidney fibrosis and apoptosis. Overall, these preclinical studies support the likelihood that EET analogs will advance to clinical trials for hypertension and associated comorbidities or acute and chronic kidney diseases.


Subject(s)
Hypertension , Renal Insufficiency, Chronic , Animals , Eicosanoids/metabolism , Humans , Hypertension/drug therapy , Hypertension/metabolism , Inflammation/metabolism , Kidney , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism
13.
Clin Sci (Lond) ; 136(6): 431-434, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35348182

ABSTRACT

The SARS-CoV-2 virus that results in COVID-19 has been found to damage multiple organs beyond the lung. Interestingly, the SARS-CoV-2 spike (S) protein can be found circulating in the blood of COVID-19 patients. Experimental findings are demonstrating that the circulating S protein can bind to receptors resulting in inflammation and cell, tissue, and organ damage. Avolio et al. previously determined that the S protein acting through the cluster of differentiation 147 (CD147) receptor, and another unknown mechanism had detrimental effects on human cardiac pericytes (Clin Sci (Lond) (2021) 135 (24): 2667-2689. DOI: 10.1042/CS20210735). These findings support the notion that circulating SARS-CoV-2 S protein could contribute to cardiovascular disease independent of viral infection. Future studies are needed to determine the effect of the S protein on pericytes in other organs and evaluate the effectiveness of CD147 receptor-blocking therapies to decrease organ damage caused by the S protein.


Subject(s)
COVID-19 , Cardiovascular Diseases , Virus Diseases , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
14.
Expert Opin Ther Targets ; 26(1): 13-28, 2022 01.
Article in English | MEDLINE | ID: mdl-35068281

ABSTRACT

INTRODUCTION: In COVID-19 pneumonia, there is a massive increase in fatty acid levels and lipid mediators with a predominance of cyclooxygenase metabolites, notably TxB2 ≫ PGE2 > PGD2 in the lungs, and 11-dehydro-TxB2, a TxA2 metabolite, in the systemic circulation. While TxA2 stimulates thromboxane prostanoid (TP) receptors, 11-dehydro-TxB2 is a full agonist of DP2 (formerly known as the CRTh2) receptors for PGD2. Anecdotal experience of using ramatroban, a dual receptor antagonist of the TxA2/TP and PGD2/DP2 receptors, demonstrated rapid symptomatic relief from acute respiratory distress and hypoxemia while avoiding hospitalization. AREAS COVERED: Evidence supporting the role of TxA2/TP receptors and PGD2/DP2 receptors in causing rapidly progressive lung injury associated with hypoxemia, a maladaptive immune response and thromboinflammation is discussed. An innovative perspective on the dual antagonism of TxA2/TP and PGD2/DP2 receptor signaling as a therapeutic approach in COVID-19 is presented. This paper examines ramatroban an anti-platelet, immunomodulator, and antifibrotic agent for acute and long-haul COVID-19. EXPERT OPINION: Ramatroban, a dual blocker of TP and DP2 receptors, has demonstrated efficacy in animal models of respiratory dysfunction, atherosclerosis, thrombosis, and sepsis, as well as preliminary evidence for rapid relief from dyspnea and hypoxemia in COVID-19 pneumonia. Ramatroban merits investigation as a promising antithrombotic and immunomodulatory agent for chemoprophylaxis and treatment.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Carbazoles/therapeutic use , Sulfonamides/therapeutic use , Thrombosis , Animals , COVID-19/complications , Chemoprevention , Humans , Inflammation/drug therapy , SARS-CoV-2 , Thrombosis/drug therapy , Post-Acute COVID-19 Syndrome
15.
Biochem Pharmacol ; 195: 114866, 2022 01.
Article in English | MEDLINE | ID: mdl-34863976

ABSTRACT

Cardiovascular and heart diseases are leading causes of morbidity and mortality. Coronary artery endothelial and vascular dysfunction, inflammation, and mitochondrial dysfunction contribute to progression of heart diseases such as arrhythmias, congestive heart failure, and heart attacks. Classes of fatty acid epoxylipids and their enzymatic regulation by soluble epoxide hydrolase (sEH) have been implicated in coronary artery dysfunction, inflammation, and mitochondrial dysfunction in heart diseases. Likewise, genetic and pharmacological manipulations of epoxylipids have been demonstrated to have therapeutic benefits for heart diseases. Increasing epoxylipids reduce cardiac hypertrophy and fibrosis and improve cardiac function. Beneficial actions for epoxylipids have been demonstrated in cardiac ischemia reperfusion injury, electrical conductance abnormalities and arrhythmias, and ventricular tachycardia. This review discusses past and recent findings on the contribution of epoxylipids in heart diseases and the potential for their manipulation to treat heart attacks, arrhythmias, ventricular tachycardia, and heart failure.


Subject(s)
Epoxide Hydrolases/metabolism , Epoxy Compounds/metabolism , Fatty Acids/metabolism , Heart Diseases/metabolism , Animals , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/enzymology , Arrhythmias, Cardiac/metabolism , Enzyme Inhibitors/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Epoxy Compounds/chemistry , Heart Diseases/drug therapy , Heart Diseases/enzymology , Heart Failure/drug therapy , Heart Failure/enzymology , Heart Failure/metabolism , Humans , Myocardial Infarction/drug therapy , Myocardial Infarction/enzymology , Myocardial Infarction/metabolism , Solubility , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/enzymology , Tachycardia, Ventricular/metabolism
16.
Curr Opin Nephrol Hypertens ; 31(1): 36-46, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34846312

ABSTRACT

PURPOSE OF REVIEW: Severe COVID-19 disease is often complicated by acute kidney injury (AKI), which may transition to chronic kidney disease (CKD). Better understanding of underlying mechanisms is important in advancing therapeutic approaches. RECENT FINDINGS: SARS-CoV-2-induced endothelial injury initiates platelet activation, platelet-neutrophil partnership and release of neutrophil extracellular traps. The resulting thromboinflammation causes ischemia-reperfusion (I/R) injury to end organs. Severe COVID-19 induces a lipid-mediator storm with massive increases in thromboxane A2 (TxA2) and PGD2, which promote thromboinflammation and apoptosis of renal tubular cells, respectively, and thereby enhance renal fibrosis. COVID-19-associated AKI improves rapidly in the majority. However, 15-30% have protracted renal injury, raising the specter of transition from AKI to CKD. SUMMARY: In COVID-19, the lipid-mediator storm promotes thromboinflammation, ischemia-reperfusion injury and cytotoxicity. The thromboxane A2 and PGD2 signaling presents a therapeutic target with potential to mitigate AKI and transition to CKD. Ramatroban, the only dual antagonist of the thromboxane A2/TPr and PGD2/DPr2 signaling could potentially mitigate renal injury in acute and long-haul COVID. Urgent studies targeting the lipid-mediator storm are needed to potentially reduce the heavy burden of kidney disease emerging in the wake of the current pandemic.


Subject(s)
Acute Kidney Injury , COVID-19 , Renal Insufficiency, Chronic , Thrombosis , Acute Kidney Injury/etiology , COVID-19/complications , Fibrosis , Humans , Inflammation , Kidney/pathology , Lipids , Renal Insufficiency, Chronic/pathology , SARS-CoV-2 , Thromboinflammation , Thrombosis/pathology , Post-Acute COVID-19 Syndrome
17.
Front Pharmacol ; 12: 744776, 2021.
Article in English | MEDLINE | ID: mdl-34955823

ABSTRACT

Kidney injury from antiangiogenic chemotherapy is a significant clinical challenge, and we currently lack the ability to effectively treat it with pharmacological agents. Thus, we set out to investigate whether simultaneous soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) inhibition using a dual sEH/COX-2 inhibitor PTUPB could be an effective strategy for treating antiangiogenic therapy-induced kidney damage. We used a multikinase inhibitor, sorafenib, which is known to cause serious renal side effects. The drug was administered to male Sprague-Dawley rats that were on a high-salt diet. Sorafenib was administered over the course of 56 days. The study included three experimental groups; 1) control group (naïve rats), 2) sorafenib group [rats treated with sorafenib only (20 mg/kg/day p.o.)], and 3) sorafenib + PTUPB group (rats treated with sorafenib only for the initial 28 days and subsequently coadministered PTUPB (10 mg/kg/day i.p.) from days 28 through 56). Blood pressure was measured every 2 weeks. After 28 days, sorafenib-treated rats developed hypertension (161 ± 4 mmHg). Over the remainder of the study, sorafenib treatment resulted in a further elevation in blood pressure through day 56 (200 ± 7 mmHg). PTUPB treatment attenuated the sorafenib-induced blood pressure elevation and by day 56, blood pressure was 159 ± 4 mmHg. Urine was collected every 2 weeks for biochemical analysis. After 28 days, sorafenib rats developed pronounced proteinuria (9.7 ± 0.2 P/C), which intensified significantly (35.8 ± 3.5 P/C) by the end of day 56 compared with control (2.6 ± 0.4 P/C). PTUPB mitigated sorafenib-induced proteinuria, and by day 56, it reduced proteinuria by 73%. Plasma and kidney tissues were collected on day 56. Kidney histopathology revealed intratubular cast formation, interstitial fibrosis, glomerular injury, and glomerular nephrin loss at day 56 in sorafenib-treated rats. PTUPB treatment reduced histological features by 30%-70% compared with the sorafenib-treated group and restored glomerular nephrin levels. Furthermore, PTUPB also acted on the glomerular permeability barrier by decreasing angiotensin-II-induced glomerular permeability to albumin. Finally, PTUPB improved in vitro the viability of human mesangial cells. Collectively, our data demonstrate the potential of using PTUPB or dual sEH/COX-2 inhibition as a therapeutic strategy against sorafenib-induced glomerular nephrotoxicity.

18.
Front Immunol ; 12: 747794, 2021.
Article in English | MEDLINE | ID: mdl-34675931

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) is commonly associated with obesity and characterized by excessive lipid accumulation and liver inflammation. The T cell immunoglobulin and mucin domain 1 (Tim-1), also known as hepatitis A virus cellular receptor 1 (Havcr-1) and kidney injury molecule 1 (Kim-1), has been shown to affect innate immunity-driven proinflammatory cascade in liver ischemia-reperfusion injury. However, its contribution to obesity-related NAFLD/NASH remains unknown. Thus, this study was designed to evaluate the role of Tim-1 in obesity-related liver inflammation and injury in wild-type (WT) and Tim-1-deficient (Tim-1-/-) C57BL/6J mice fed a high-fat diet (HFD) for 5-6 months. HFD feeding induced steatosis and upregulated Tim-1 gene expression in the liver of WT mice. Surprisingly, Tim-1-/- mice on HFD diet exhibited an exacerbation of hepatic steatosis, accompanied with an elevation of protein levels of fatty acid translocase CD36 and sterol regulatory element binding protein 1 (SREBP1). Tim-1 deficiency also enhanced HFD-induced liver inflammation and injury, as evidenced by augmented increase in hepatic expression of pro-inflammatory factor lipocalin 2 and elevated serum alanine transaminase (ALT). In addition, gene expression of type I, III and IV collagens and liver fibrosis were greatly enhanced in HFD Tim-1-/- mice compared with HFD WT mice. HFD-induced hepatic expression of YM-1, a specific mouse M2 macrophage marker, was further upregulated by deletion of Tim-1. Together, these results show that Tim-1 deficiency aggravates the effects of HFD diet on lipid accumulation and liver fibrosis, most likely through enhanced infiltration and activation of inflammatory cells.


Subject(s)
Hepatitis A Virus Cellular Receptor 1/deficiency , Hepatitis A Virus Cellular Receptor 1/immunology , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology , Animals , Diet, High-Fat/adverse effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
19.
Cells ; 10(10)2021 10 05.
Article in English | MEDLINE | ID: mdl-34685639

ABSTRACT

Reduced levels of the sensory nerve neuropeptide substance P (SP) have been reported in the diabetic rat heart, the consequence being a loss of cardioprotection in response to ischemic post-conditioning. We considered whether this loss of SP also predisposes the heart to non-ischemic diabetic cardiomyopathy in the form of fibrosis and hypertrophy. We report that diabetic Leprdb/db mice have reduced serum SP and that administration of exogenous replacement SP ameliorated cardiac fibrosis. Cardiac hypertrophy did not occur in Leprdb/db mice. Cardiac fibroblasts exposed to high glucose converted to a myofibroblast phenotype and produced excess extracellular matrix proteins; this was prevented by the presence of SP in the culture media. Cardiac fibroblasts exposed to high glucose produced increased amounts of the receptor for advanced glycation end products, reactive oxygen species and inflammatory cytokines, all of which were prevented by SP. Cultured macrophages assumed an M1 pro-inflammatory phenotype in response to high glucose as indicated by increased TNF-α, CCL2, and IL-6. SP promoted a shift to the reparative M2 macrophage phenotype characterized by arginase-1 and IL-10. Leprdb/db mice showed increased left ventricular M1 phenotype macrophages and an increase in the M1/M2 ratio. Replacement SP in Leprdb/db mice restored a favorable M1 to M2 balance. Together these findings indicate that a loss of SP predisposes the diabetic heart to developing fibrosis. The anti-fibrotic actions of replacement SP involve direct effects on cardiac fibroblasts and macrophages to oppose adverse phenotype changes. This study identifies the potential of replacement SP to treat diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus, Experimental/pathology , Fibroblasts/pathology , Macrophages/pathology , Myocardium/pathology , Substance P/pharmacology , Animals , Cardiomegaly/complications , Cardiomegaly/pathology , Cytokines/biosynthesis , Diabetes Mellitus, Experimental/complications , Fibroblasts/drug effects , Fibrosis , Glucose/toxicity , Macrophages/drug effects , Male , Mice, Inbred C57BL , Models, Biological , Oxidative Stress/drug effects , Phenotype , Receptor for Advanced Glycation End Products/metabolism , Receptors, Leptin/metabolism
20.
Biomedicines ; 9(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34440257

ABSTRACT

This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin system (RAS). The results were compared with standard pharmacological blockade of the RAS using angiotensin-converting enzyme inhibitor (ACEi). The rationale for employing EET-A as a new treatment approach is based on our findings that apart from increased RAS activity, untreated ACF TGR also shows kidney and left ventricle (LV) tissue deficiency of EETs. Untreated ACF TGR began to die 17 days after creating ACF and were all dead by day 84. The treatment with EET-A alone or ACEi alone improved the survival rate: in 156 days after ACF creation, it was 45.5% and 59.4%, respectively. The combined treatment with EET-A and ACEi appeared to improve the final survival to 71%; however, the difference from either single treatment regimen did not reach significance. Nevertheless, our findings support the notion that targeting the cytochrome P-450-dependent epoxygenase pathway of arachidonic acid metabolism should be considered for the treatment of HF.

SELECTION OF CITATIONS
SEARCH DETAIL