Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Transl Stroke Res ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822994

ABSTRACT

Timely relief of edema and clearance of waste products, as well as promotion of anti-inflammatory immune responses, reduce ischemic stroke pathology, and attenuate harmful long-term effects post-stroke. The discovery of an extensive and functional lymphatic vessel system in the outermost meningeal layer, dura mater, has opened up new possibilities to facilitate post-stroke recovery by inducing dural lymphatic vessel (dLV) growth via a single injection of a vector encoding vascular endothelial growth factor C (VEGF-C). In the present study, we aimed to improve post-stroke outcomes by inducing dLV growth in mice. We injected mice with a single intracerebroventricular dose of adeno-associated viral particles encoding VEGF-C before subjecting them to transient middle cerebral artery occlusion (tMCAo). Behavioral testing, Gadolinium (Gd) contrast agent-enhanced magnetic resonance imaging (MRI), and immunohistochemical analysis were performed to define the impact of VEGF-C on the post-stroke outcome. VEGF-C improved stroke-induced behavioral deficits, such as gait disturbances and neurological deficits, ameliorated post-stroke inflammation, and enhanced an alternative glial immune response. Importantly, VEGF-C treatment increased the drainage of brain interstitial fluid (ISF) and cerebrospinal fluid (CSF), as shown by Gd-enhanced MRI. These outcomes were closely associated with an increase in the growth of dLVs around the region where we observed increased vefgc mRNA expression within the brain, including the olfactory bulb, cortex, and cerebellum. Strikingly, VEGF-C-treated ischemic mice exhibited a faster and stronger Gd-signal accumulation in ischemic core area and an enhanced fluid outflow via the cribriform plate. In conclusion, the VEGF-C-induced dLV growth improved the overall outcome post-stroke, indicating that VEGF-C has potential to be included in the treatment strategies of post-ischemic stroke. However, to maximize the therapeutic potential of VEGF-C treatment, further studies on the impact of an enhanced dural lymphatic system at clinically relevant time points are essential.

2.
NMR Biomed ; : e5142, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494895

ABSTRACT

Integrating datasets from multiple sites and scanners can increase statistical power for neuroimaging studies but can also introduce significant inter-site confounds. We evaluated the effectiveness of ComBat, an empirical Bayes approach, to combine longitudinal preclinical MRI data acquired at 4.7 or 9.4 T at two different sites in Australia. Male Sprague Dawley rats underwent MRI on Days 2, 9, 28, and 150 following moderate/severe traumatic brain injury (TBI) or sham injury as part of Project 1 of the NIH/NINDS-funded Centre Without Walls EpiBioS4Rx project. Diffusion-weighted and multiple-gradient-echo images were acquired, and outcomes included QSM, FA, and ADC. Acute injury measures including apnea and self-righting reflex were consistent between sites. Mixed-effect analysis of ipsilateral and contralateral corpus callosum (CC) summary values revealed a significant effect of site on FA and ADC values, which was removed following ComBat harmonization. Bland-Altman plots for each metric showed reduced variability across sites following ComBat harmonization, including for QSM, despite appearing to be largely unaffected by inter-site differences and no effect of site observed. Following harmonization, the combined inter-site data revealed significant differences in the imaging metrics consistent with previously reported outcomes. TBI resulted in significantly reduced FA and increased susceptibility in the ipsilateral CC, and significantly reduced FA in the contralateral CC compared with sham-injured rats. Additionally, TBI rats also exhibited a reversal in ipsilateral CC ADC values over time with significantly reduced ADC at Day 9, followed by increased ADC 150 days after injury. Our findings demonstrate the need for harmonizing multi-site preclinical MRI data and show that this can be successfully achieved using ComBat while preserving phenotypical changes due to TBI.

3.
Epilepsy Res ; 200: 107301, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244466

ABSTRACT

OBJECTIVE: To assess the prevalence of brain abscesses as a confounding factor for the diagnosis of post-traumatic epilepsy (PTE) in a rat model of lateral fluid-percussion-induced (FPI) traumatic brain injury (TBI). METHODS: This retrospective study included 583 rats from 3 study cohorts collected over 2009-2022 in a single laboratory. The rats had undergone sham-operation or TBI using lateral FPI. Rats were implanted with epidural and/or intracerebral electrodes for electroencephalogram recordings. Brains were processed for histology to screen for abscess(es). In abscess cases, (a) unfolded cortical maps were constructed to assess the cortical location and area of the abscess, (b) the abscess tissue was Gram stained to determine the presence of gram-positive and gram-negative bacteria, and (c) immunostaining was performed to detect infiltrating neutrophils, T-lymphocytes, and glial cells as tissue biomarkers of inflammation. In vivo and/or ex vivo magnetic resonance images available from a subcohort of animals were reviewed to evaluate the presence of abscesses. Plasma samples available from a subcohort of rats were used for enzyme-linked immunosorbent assays to determine the levels of lipopolysaccharide (LPS) as a circulating biomarker for gram-negative bacteria. RESULTS: Brain abscesses were detected in 2.6% (15/583) of the rats (6 sham, 9 TBI). In histology, brain abscesses were characterized as vascularized encapsulated lesions filled with neutrophils and surrounded by microglia/macrophages and astrocytes. The abscesses were mainly located under the screw electrodes, support screws, or craniectomy. Epilepsy was diagnosed in 60% (9/15) of rats with an abscess (4 sham, 5 TBI). Of these, 67% (6/9) had seizure clusters. The average seizure frequency in abscess cases was 0.436 ± 0.281 seizures/d. Plasma LPS levels were comparable between rats with and without abscesses (p > 0.05). SIGNIFICANCE: Although rare, a brain abscess is a potential confounding factor for epilepsy diagnosis in animal models of structural epilepsies following brain surgery and electrode implantation, particularly if seizures occur in sham-operated experimental controls and/or in clusters.


Subject(s)
Brain Abscess , Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Rats , Animals , Epilepsy, Post-Traumatic/pathology , Percussion/methods , Retrospective Studies , Anti-Bacterial Agents , Lipopolysaccharides , Rats, Sprague-Dawley , Gram-Negative Bacteria , Gram-Positive Bacteria , Brain Injuries, Traumatic/complications , Seizures/etiology , Epilepsy/etiology , Brain Abscess/diagnostic imaging , Disease Models, Animal
4.
Epilepsia ; 65(2): 511-526, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052475

ABSTRACT

OBJECTIVE: This study was undertaken to assess reproducibility of the epilepsy outcome and phenotype in a lateral fluid percussion model of posttraumatic epilepsy (PTE) across three study sites. METHODS: A total of 525 adult male Sprague Dawley rats were randomized to lateral fluid percussion-induced brain injury (FPI) or sham operation. Of these, 264 were assigned to magnetic resonance imaging (MRI cohort, 43 sham, 221 traumatic brain injury [TBI]) and 261 to electrophysiological follow-up (EEG cohort, 41 sham, 220 TBI). A major effort was made to harmonize the rats, materials, equipment, procedures, and monitoring systems. On the 7th post-TBI month, rats were video-EEG monitored for epilepsy diagnosis. RESULTS: A total of 245 rats were video-EEG phenotyped for epilepsy on the 7th postinjury month (121 in MRI cohort, 124 in EEG cohort). In the whole cohort (n = 245), the prevalence of PTE in rats with TBI was 22%, being 27% in the MRI and 18% in the EEG cohort (p > .05). Prevalence of PTE did not differ between the three study sites (p > .05). The average seizure frequency was .317 ± .725 seizures/day at University of Eastern Finland (UEF; Finland), .085 ± .067 at Monash University (Monash; Australia), and .299 ± .266 at University of California, Los Angeles (UCLA; USA; p < .01 as compared to Monash). The average seizure duration did not differ between UEF (104 ± 48 s), Monash (90 ± 33 s), and UCLA (105 ± 473 s; p > .05). Of the 219 seizures, 53% occurred as part of a seizure cluster (≥3 seizures/24 h; p >.05 between the study sites). Of the 209 seizures, 56% occurred during lights-on period and 44% during lights-off period (p > .05 between the study sites). SIGNIFICANCE: The PTE phenotype induced by lateral FPI is reproducible in a multicenter design. Our study supports the feasibility of performing preclinical multicenter trials in PTE to increase statistical power and experimental rigor to produce clinically translatable data to combat epileptogenesis after TBI.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Animals , Male , Rats , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Epilepsy/etiology , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/pathology , Percussion , Phenotype , Rats, Sprague-Dawley , Reproducibility of Results , Seizures
5.
Epilepsy Res ; 199: 107263, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056191

ABSTRACT

OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Animals , Rats , Biomarkers , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Epilepsy/etiology , Epilepsy/diagnosis , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/drug therapy , Seizures , Multicenter Studies as Topic
6.
Epilepsy Res ; 195: 107201, 2023 09.
Article in English | MEDLINE | ID: mdl-37562146

ABSTRACT

Preclinical MRI studies have been utilized for the discovery of biomarkers that predict post-traumatic epilepsy (PTE). However, these single site studies often lack statistical power due to limited and homogeneous datasets. Therefore, multisite studies, such as the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx), are developed to create large, heterogeneous datasets that can lead to more statistically significant results. EpiBioS4Rx collects preclinical data internationally across sites, including the United States, Finland, and Australia. However, in doing so, there are robust normalization and harmonization processes that are required to obtain statistically significant and generalizable results. This work describes the tools and procedures used to harmonize multisite, multimodal preclinical imaging data acquired by EpiBioS4Rx. There were four main harmonization processes that were utilized, including file format harmonization, naming convention harmonization, image coordinate system harmonization, and diffusion tensor imaging (DTI) metrics harmonization. By using Python tools and bash scripts, the file formats, file names, and image coordinate systems are harmonized across all the sites. To harmonize DTI metrics, values are estimated for each voxel in an image to generate a histogram representing the whole image. Then, the Quantitative Imaging Toolkit (QIT) modules are utilized to scale the mode to a value of one and depict the subsequent harmonized histogram. The standardization of file formats, naming conventions, coordinate systems, and DTI metrics are qualitatively assessed. The histograms of the DTI metrics were generated for all the individual rodents per site. For inter-site analysis, an average of the individual scans was calculated to create a histogram that represents each site. In order to ensure the analysis can be run at the level of individual animals, the sham and TBI cohort were analyzed separately, which depicted the same harmonization factor. The results demonstrate that these processes qualitatively standardize the file formats, naming conventions, coordinate systems, and DTI metrics of the data. This assists in the ability to share data across the study, as well as disseminate tools that can help other researchers to strengthen the statistical power of their studies and analyze data more cohesively.


Subject(s)
Epilepsy, Post-Traumatic , Epilepsy , Animals , Epilepsy, Post-Traumatic/drug therapy , Diffusion Tensor Imaging , Magnetic Resonance Imaging , Biomarkers , Brain/diagnostic imaging
7.
Biomedicines ; 10(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36140398

ABSTRACT

Brain atrophy induced by traumatic brain injury (TBI) progresses in parallel with epileptogenesis over time, and thus accurate placement of intracerebral electrodes to monitor seizure initiation and spread at the chronic postinjury phase is challenging. We evaluated in adult male Sprague Dawley rats whether adjusting atlas-based electrode coordinates on the basis of magnetic resonance imaging (MRI) increases electrode placement accuracy and the effect of chronic electrode implantations on TBI-induced brain atrophy. One group of rats (EEG cohort) was implanted with two intracortical (anterior and posterior) and a hippocampal electrode right after TBI to target coordinates calculated using a rat brain atlas. Another group (MRI cohort) was implanted with the same electrodes, but using T2-weighted MRI to adjust the planned atlas-based 3D coordinates of each electrode. Histological analysis revealed that the anterior cortical electrode was in the cortex in 83% (25% in targeted layer V) of the EEG cohort and 76% (31%) of the MRI cohort. The posterior cortical electrode was in the cortex in 40% of the EEG cohort and 60% of the MRI cohort. Without MRI-guided adjustment of electrode tip coordinates, 58% of the posterior cortical electrodes in the MRI cohort will be in the lesion cavity, as revealed by simulated electrode placement on histological images. The hippocampal electrode was accurately placed in 82% of the EEG cohort and 86% of the MRI cohort. Misplacement of intracortical electrodes related to their rostral shift due to TBI-induced cortical and hippocampal atrophy and caudal retraction of the brain, and was more severe ipsilaterally than contralaterally (p < 0.001). Total lesion area in cortical subfields targeted by the electrodes (primary somatosensory cortex, visual cortex) was similar between cohorts (p > 0.05). MRI-guided adjustment of coordinates for electrodes improved the success rate of intracortical electrode tip placement nearly to that at the acute postinjury phase (68% vs. 62%), particularly in the posterior brain, which exhibited the most severe postinjury atrophy. Overall, MRI-guided electrode implantation improved the quality and interpretation of the origin of EEG-recorded signals.

8.
Epilepsia Open ; 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35962745

ABSTRACT

The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. In this article, we discuss CDEs for neuroimaging data that are collected in rodent models of epilepsy, with a focus on adult rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the methodologies for several imaging modalities and the parameters that can be collected.

9.
Brain Res ; 1788: 147934, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35483447

ABSTRACT

Hippocampal and thalamo-cortico-striatal networks are critical for memory function as well as execution of a variety of learning strategies. In subjects with memory impairment as a sequel of traumatic brain injury (TBI), the contribution of late metabolic depression across these networks to memory deficit is poorly understood. We used [18F]-FDG-PET to measure chronic post-TBI glucose uptake in the striatum and connected brain areas (septal and temporal hippocampus, thalamus, entorhinal cortex, frontoparietal cortex and amygdala) in rats with lateral fluid-percussion injury (LFPI). Then we assessed a link between network hypometabolism and memory impairment. At 4 months post TBI, glucose uptake was decreased in ipsilateral striatum (10%, p = 0.027), frontoparietal cortex (17%, p = 0.00009), and hippocampus (22%, p = 0.027) as compared to sham operated controls. Thalamic uptake was 6% lower ipsilaterally than contralaterally, p = 0.00004). At 5 months, Morris water maze (MWM) showed memory impairment in 83% of the rats with TBI. The lower the hippocampal or striatal [18F]-FDG uptake, the poorer the MWM performance (hippocampus: r = -0.471, p < 0.05; striatum: r = -0.696, p < 0.001). Striatal [18F]-FDG-PET identified the injured animals with memory impairment with 100% specificity and sensitivity (AUC = 1.000, p = 0.009). Interestingly, the low striatal glucose uptake was a better diagnostic biomarker for memory impairment than the reduced hippocampal (AUC = 0.806, p = 0.112) or entorhinal (AUC = 0.528, p = 0.885) glucose uptake. The volumetric atrophy assessed in T2 weighted MRI or the gliotic area in Nissl staining did not correlate with glucose uptake. Arterial spin labeling did not indicate any reduction in the striatal blood flow. Our study suggests that TBI-induced chronic hypometabolism in striatum contributes to the cognitive deficits.


Subject(s)
Brain Injuries, Traumatic , Fluorodeoxyglucose F18 , Animals , Brain/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/metabolism , Fluorodeoxyglucose F18/metabolism , Glucose/metabolism , Hippocampus/metabolism , Humans , Magnetic Resonance Imaging , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Memory Disorders/metabolism , Percussion , Rats
10.
Epilepsia ; 63(7): 1849-1861, 2022 07.
Article in English | MEDLINE | ID: mdl-35451496

ABSTRACT

OBJECTIVE: This study was undertaken to identify prognostic biomarkers for posttraumatic epileptogenesis derived from parameters related to the hippocampal position and orientation. METHODS: Data were derived from two preclinical magnetic resonance imaging (MRI) follow-up studies: EPITARGET (156 rats) and Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx; University of Eastern Finland cohort, 43 rats). Epileptogenesis was induced with lateral fluid percussion-induced traumatic brain injury (TBI) in adult male Sprague Dawley rats. In the EPITARGET cohort, T 2 ∗ -weighted MRI was performed at 2, 7, and 21 days and in the EpiBioS4Rx cohort at 2, 9, and 30 days and 5 months post-TBI. Both hippocampi were segmented using convolutional neural networks. The extracted segmentation mask was used for a geometric construction, extracting 39 parameters that described the position and orientation of the left and right hippocampus. In each cohort, we assessed the parameters as prognostic biomarkers for posttraumatic epilepsy (PTE) both individually, using repeated measures analysis of variance, and in combination, using random forest classifiers. RESULTS: The extracted parameters were highly effective in discriminating between sham-operated and TBI rats in both the EPITARGET and EpiBioS4Rx cohorts at all timepoints (t; balanced accuracy > .9). The most discriminating parameter was the inclination of the hippocampus ipsilateral to the lesion at t = 2 days and the volumes at t ≥ 7 days after TBI. Furthermore, in the EpiBioS4Rx cohort, we could effectively discriminate epileptogenic from nonepileptogenic animals with a longer MRI follow-up, at t = 150 days (area under the curve = .78, balanced accuracy = .80, p = .0050), based on the orientation of both hippocampi. We found that the ipsilateral hippocampus rotated outward on the horizontal plane, whereas the contralateral hippocampus rotated away from the vertical direction. SIGNIFICANCE: We demonstrate that assessment of TBI-induced hippocampal deformation by clinically translatable MRI methodologies detects subjects with prior TBI as well as those at high risk of PTE, paving the way toward subject stratification for antiepileptogenesis studies.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Animals , Biomarkers , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Epilepsy/diagnosis , Epilepsy, Post-Traumatic/diagnostic imaging , Epilepsy, Post-Traumatic/drug therapy , Epilepsy, Post-Traumatic/etiology , Hippocampus/diagnostic imaging , Humans , Male , Percussion , Prognosis , Rats , Rats, Sprague-Dawley
11.
Front Neurol ; 13: 820267, 2022.
Article in English | MEDLINE | ID: mdl-35250823

ABSTRACT

Registration-based methods are commonly used in the automatic segmentation of magnetic resonance (MR) brain images. However, these methods are not robust to the presence of gross pathologies that can alter the brain anatomy and affect the alignment of the atlas image with the target image. In this work, we develop a robust algorithm, MU-Net-R, for automatic segmentation of the normal and injured rat hippocampus based on an ensemble of U-net-like Convolutional Neural Networks (CNNs). MU-Net-R was trained on manually segmented MR images of sham-operated rats and rats with traumatic brain injury (TBI) by lateral fluid percussion. The performance of MU-Net-R was quantitatively compared with methods based on single and multi-atlas registration using MR images from two large preclinical cohorts. Automatic segmentations using MU-Net-R and multi-atlas registration were of excellent quality, achieving cross-validated Dice scores above 0.90 despite the presence of brain lesions, atrophy, and ventricular enlargement. In contrast, the performance of single-atlas segmentation was unsatisfactory (cross-validated Dice scores below 0.85). Interestingly, the registration-based methods were better at segmenting the contralateral than the ipsilateral hippocampus, whereas MU-Net-R segmented the contralateral and ipsilateral hippocampus equally well. We assessed the progression of hippocampal damage after TBI by using our automatic segmentation tool. Our data show that the presence of TBI, time after TBI, and whether the hippocampus was ipsilateral or contralateral to the injury were the parameters that explained hippocampal volume.

12.
Brain Struct Funct ; 227(1): 145-158, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34757444

ABSTRACT

Ventricular enlargement is one long-term consequence of a traumatic brain injury, and a risk factor for memory disorders and epilepsy. One underlying mechanisms of the chronic ventricular enlargement is disturbed cerebrospinal-fluid secretion or absorption by choroid plexus. We set out to characterize the different aspects of ventricular enlargement in lateral fluid percussion injury (FPI) rat model by magnetic resonance imaging (MRI) and discovered choroid plexus injury in rats that later developed hydrocephalus. We followed the brain pathology progression for 6 months and studied how the ventricular growth was associated with the choroid plexus injury, cortical lesion expansion, hemorrhagic load or blood perfusion deficits. We correlated MRI findings with the seizure susceptibility in pentylenetetrazol challenge and memory function in Morris water-maze. Choroid plexus injury was validated by ferric iron (Prussian blue) and cytoarchitecture (Nissl) stainings. We discovered choroid plexus injury that accumulates iron in 90% of FPI rats by MRI. The amount of the choroid plexus iron remained unaltered 1-, 3- and 6-month post-injury. During this time, the ventricles kept on growing bilaterally. Ventricular growth did not depend on the cortical lesion severity or the cortical hemorrhagic load suggesting a separate pathology. Instead, the results indicate choroidal injury as one driver of the post-traumatic hydrocephalus, since the higher the choroid plexus iron load the larger were the ventricles at 6 months. The ventricle size or the choroid plexus iron load did not associate with seizure susceptibility. Cortical hypoperfusion and memory deficits were worse in rats with greater ventricular growth.


Subject(s)
Brain Injuries, Traumatic , Choroid Plexus , Seizures , Animals , Atrophy/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Choroid Plexus/diagnostic imaging , Choroid Plexus/pathology , Disease Models, Animal , Follow-Up Studies , Hydrocephalus/pathology , Iron , Magnetic Resonance Imaging , Rats
13.
Front Neurosci ; 13: 863, 2019.
Article in English | MEDLINE | ID: mdl-31474824

ABSTRACT

Sustained inflammation in the injured cortex is a promising therapeutic target for disease-modification after traumatic brain injury (TBI). However, its extent and dynamics of expansion are incompletely understood which challenges the timing and placement of therapeutics to lesioned area. Our aim was to characterize the evolution of chronic inflammation during lesion expansion in lateral fluid-percussion injury (FPI) rat model with focus on the MRI-negative perilesional cortex. T2-weighted MR imaging (T2w MRI) and localized magnetic resonance spectroscopy (MRS) were performed at 1, 3, and 6 months post-injury. End-point histology, including Nissl for neuronal death, GFAP for astrogliosis, and Prussian Blue for iron were used to assess perilesional histopathology. An additional animal cohort was imaged with a positron emission tomography (PET) using translocator protein 18 kDa (TSPO) radiotracer [18F]-FEPPA. T2w MRI assessed lesion growth and detected chronic inflammation along the lesion border while rest of the ipsilateral cortex was MRI-negative (MRI-). Instead, myo-inositol that is an inflammatory MRS marker for gliosis, glutathione for oxidative stress, and choline for membrane turnover were elevated throughout the 6-months follow-up in the MRI- perilesional cortex (all p < 0.05). MRS markers revealed chronically sustained inflammation across the ipsilateral cortex but did not indicate the upcoming lesion expansion. Instead, the rostral expansion of the cortical lesion was systematically preceded by a hyperintense band in T2w images months earlier. Histologic analysis of the hyperintensity indicated scattered astrocytes, incomplete glial scar, and intracellularly packed and free iron. Yet, the band was negative in [18F]-FEPPA-PET. [18F]-FEPPA also showed no cortical TSPO expression within the MRS voxel in MRI- perilesional cortex or anywhere along glial scar when assessed at 2 months post-injury. However, [18F]-FEPPA showed a robust signal increase, indicating reactive microgliosis in the ipsilateral thalamus at 2 months post-TBI. We present evidence that MRS reveals chronic posttraumatic inflammation in MRI-negative perilesional cortex. The mismatch in MRS, MRI, and PET measures may allow non-invasive endophenotyping of beneficial and detrimental inflammatory processes to aid targeting and timing of anti-inflammatory therapeutics.

14.
Sci Rep ; 9(1): 11819, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413303

ABSTRACT

Traumatic brain injury (TBI) causes neuroendocrine dysregulation in up to 40% of humans, which is related to impaired function of the hypothalamo-hypophyseal axis and contributes to TBI-related co-morbidities. Our objective was to investigate whether hypophyseal atrophy can be recapitulated in rat lateral fluid-percussion injury model of human TBI. High-resolution structural magnetic resonance images (MRI) were acquired from rats at 2 days and 5 months post-TBI. To measure the lobe-specific volumetric changes, manganese-enhanced MRI (MEMRI) scans were acquired from rats at 8 months post-TBI, which also underwent the pentylenetetrazol (PTZ) seizure susceptibility and Morris water-maze spatial memory tests. MRI revealed no differences in the total hypophyseal volume between TBI and controls at 2 days, 5 months or 8 months post-TBI. Surprisingly, MEMRI at 8 months post-TBI indicated a 17% reduction in neurohypophyseal volume in the TBI group as compared to controls (1.04 ± 0.05 mm3 vs 1.25 ± 0.05 mm3, p < 0.05). Moreover, neurohypophyseal volume inversely correlated with the number of PTZ-induced epileptiform discharges and the mean latency to platform in the Morris water-maze test. Our data demonstrate that TBI leads to neurohypophyseal lobe-specific atrophy and may serve as a prognostic biomarker for post-TBI outcome.


Subject(s)
Brain Injuries, Traumatic/pathology , Pituitary Gland/pathology , Animals , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/physiopathology , Convulsants/toxicity , Disease Models, Animal , Electroencephalography , Humans , Magnetic Resonance Imaging , Male , Maze Learning , Pentylenetetrazole/toxicity , Pituitary Gland/diagnostic imaging , Pituitary Gland/drug effects , Prognosis , Rats , Retrospective Studies
15.
Epilepsy Res ; 156: 106131, 2019 10.
Article in English | MEDLINE | ID: mdl-31076256

ABSTRACT

RATIONALE: The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) Centre without walls is an NIH funded multicenter consortium. One of EpiBioS4Rx projects is a preclinical post-traumatic epileptogenesis biomarker study that involves three study sites: The University of Eastern Finland, Monash University (Melbourne) and the University of California Los Angeles. Our objective is to create a platform for evaluating biomarkers and testing new antiepileptogenic treatments for post-traumatic epilepsy (PTE) using the lateral fluid percussion injury (FPI) model in rats. As only 30-50% of rats with severe lateral FPI develop PTE by 6 months post-injury, prolonged video-EEG monitoring is crucial to identify animals with PTE. Our objective is to harmonize the surgical and data collection procedures, equipment, and data analysis for chronic EEG recording in order to phenotype PTE in this rat model across the three study sites. METHODS: Traumatic brain injury (TBI) was induced using lateral FPI in adult male Sprague-Dawley rats aged 11-12 weeks. Animals were divided into two cohorts: a) the long-term video-EEG follow-up cohort (Specific Aim 1), which was implanted with EEG electrodes within 24 h after the injury; and b) the magnetic resonance imaging (MRI) follow-up cohort (Specific Aim 2), at 5 months after lateral FPI. Four cortical epidural screw electrodes (2 ipsilateral, 2 contralateral) and three intracerebral bipolar electrodes were implanted (septal CA1 and the dentate gyrus, layers II and VI of the perilesional cortex both anterior and posterior to the injury site). During the 7th post-TBI month, animals underwent 4 weeks of continuous video-EEG recordings to diagnose of PTE. RESULTS: All centers harmonized the induction of TBI and surgical procedures for the implantation of EEG recordings, utilizing 4 or more EEG recording channels to cover areas ipsilateral and contralateral to the brain injury, perilesional cortex and the hippocampus and dentate gyrus. Ground and reference screw electrodes were implanted. At all sites the minimum sampling rate was 512 Hz, utilizing a finite impulse response (FIR) and impedance below 10 KΩ through the entire recording. As part of the quality control criteria we avoided electrical noise, and monitoring changes in impedance over time and the appearance of noise on the recordings. To reduce electrical noise, we regularly checked the integrity of the cables, stability of the EEG recording cap and the appropriate connection of the electrodes with the cables. Following the pipeline presented in this article and after applying the quality control criteria to our EEG recordings all of the sites were successful to phenotype seizure in chronic EEG recordings of animals after TBI. DISCUSSION: Despite differences in video-EEG acquisition equipment used, the three centers were able to consistently phenotype seizures in the lateral fluid-percussion model applying the pipeline presented here. The harmonization of methodology will help to improve the rigor of preclinical research, improving reproducibility of pre-clinical research in the search of biomarkers and therapies to prevent antiepileptogenesis.


Subject(s)
Brain Injuries, Traumatic/pathology , Cerebral Cortex/pathology , Epilepsy, Post-Traumatic/pathology , Seizures , Animals , Biomarkers/analysis , Disease Models, Animal , Male , Phenotype , Rats, Sprague-Dawley , Video Recording/methods
16.
Epilepsy Res ; 156: 106110, 2019 10.
Article in English | MEDLINE | ID: mdl-30981541

ABSTRACT

Studies of chronic epilepsy show pathological high frequency oscillations (HFOs) are associated with brain areas capable of generating epileptic seizures. Only a few of these studies have focused on HFOs during the development of epilepsy, but results suggest pathological HFOs could be a biomarker of epileptogenesis. The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy" (EpiBioS4Rx) is a multi-center project designed to identify biomarkers of epileptogenesis after a traumatic brain injury (TBI) and evaluate treatments that could modify or prevent the development of post-traumatic epilepsy. One goal of the EpiBioS4Rx project is to assess whether HFOs could be a biomarker of post-traumatic epileptogenesis. The current study describes the work towards this goal, including the development of common surgical procedures and EEG protocols, an interim analysis of the EEG for HFOs, and identifying issues that need to be addressed for a robust biomarker analysis. At three participating sites - University of Eastern Finland (UEF), Monash University in Melbourne (Melbourne) and University of California, Los Angeles (UCLA) - TBI was induced in adult male Sprague-Dawley rats by lateral fluid-percussion injury. After injury and in sham-operated controls, rats were implanted with screw and microwire electrodes positioned in neocortex and hippocampus to record EEG. A separate group of rats had serial magnetic resonance imaging after injury and then implanted with electrodes at 6 months. Recordings 28 days post-injury were available from UEF and UCLA, but not Melbourne due to technical issues with their EEG files. Analysis of recordings from 4 rats - UEF and UCLA each had one TBI and one sham-operated control - showed EEG contained evidence of HFOs. Computer-automated algorithms detected a total of 1,819 putative HFOs and of these only 40 events (2%) were detected by all three sites. Manual review of all events verified 130 events as HFO and the remainder as false positives. Review of the 40 events detected by all three sites was associated with 88% agreement. This initial report from the EpiBioS4Rx Consortium demonstrates the standardization of EEG electrode placements, recording protocol and long-term EEG monitoring, and differences in detection algorithm HFO results between sites. Additional work on detection strategy, detection algorithm performance, and training in HFO review will be performed to establish a robust, preclinical evaluation of HFOs as a biomarker of post-traumatic epileptogenesis.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Brain Waves/physiology , Epilepsy, Post-Traumatic/physiopathology , Neocortex/physiopathology , Animals , Disease Models, Animal , Electrodes, Implanted/psychology , Male , Percussion , Rats, Sprague-Dawley
17.
Epilepsy Res ; 151: 7-16, 2019 03.
Article in English | MEDLINE | ID: mdl-30711714

ABSTRACT

Multi-center preclinical studies can facilitate the discovery of biomarkers of antiepileptogenesis and thus facilitate the diagnosis and treatment development of patients at risk of developing post-traumatic epilepsy. However, these studies are often limited by the difficulty in harmonizing experimental protocols between laboratories. Here, we assess whether the production of traumatic brain injury (TBI) using the lateral fluid-percussion injury (FPI) in adult male Sprague-Dawley rats (12 weeks at the time of injury) was harmonized between three laboratories - located in the University of Eastern Finland (UEF), Monash University in Melbourne, Australia (Melbourne) and The University of California, Los Angeles, USA (UCLA). These laboratories are part of the international multicenter-based project, the Epilepsy Bioinformatics Study for Antiepileptogenesis Therapy (EpiBioS4Rx). Lateral FPI was induced in adult male Sprague-Dawley rats. The success of methodological harmonization was assessed by performing inter-site comparison of injury parameters including duration of anesthesia during surgery, impact pressure, post-impact transient apnea, post-impact seizure-like behavior, acute mortality (<72 h post-injury), time to self-right after the impact, and severity of the injury (assessed with the neuroscore). The data was collected using Common Data Elements and Case Report Forms. The acute mortality was 15% (UEF), 50% (Melbourne) and 57% (UCLA) (p < 0.001). The sites differed in the duration of anesthesia, the shortest being at UEF < Melbourne < UCLA (p < 0.001). The impact pressure used also differed between the sites, the highest being in UEF > Melbourne > UCLA (p < 0.001). The impact pressure associated with the severity of the functional deficits (low neuroscore) (P < 0.05) only at UEF, but not at any of the other sites. Additionally, the sites differed in the duration of post-impact transient apnea (p < 0.001) and time to self-right (P < 0.001), the highest values in both parameters was registered in Melbourne. Post-impact seizure-like behavior was observed in 51% (UEF), 25% (Melbourne) and 2% (UCLA) of rats (p < 0.001). Despite the differences in means when all sites were compared there was significant overlap in injury parameters between the sites. The data reflects the technical difficulties in the production of lateral FPI across multiple sites. On the other hand, the data can be used to model the heterogeneity in human cohorts with closed-head injury. Our animal cohort will provide a good starting point to investigate the factors associated with epileptogenesis after lateral FPI.


Subject(s)
Brain Injuries/complications , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/metabolism , International Cooperation , Animals , Anticonvulsants , Disease Models, Animal , Electroencephalography , Epilepsy, Post-Traumatic/diagnostic imaging , Epilepsy, Post-Traumatic/drug therapy , Female , Humans , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric
18.
Epilepsy Res ; 150: 46-57, 2019 02.
Article in English | MEDLINE | ID: mdl-30641351

ABSTRACT

Preclinical imaging studies of posttraumatic epileptogenesis (PTE) have largely been proof-of-concept studies with limited animal numbers, and thus lack the statistical power for biomarker discovery. Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is a pioneering multicenter trial investigating preclinical imaging biomarkers of PTE. EpiBios4Rx faced the issue of harmonizing the magnetic resonance imaging (MRI) procedures and imaging data metrics prior to its execution. We present here the harmonization process between three preclinical MRI facilities at the University of Eastern Finland (UEF), the University of Melbourne (Melbourne), and the University of California, Los Angeles (UCLA), and evaluate the uniformity of the obtained MRI data. Adult, male rats underwent a lateral fluid percussion injury (FPI) and were followed by MRI 2 days, 9 days, 1 month, and 5 months post-injury. Ex vivo scans of fixed brains were conducted 7 months post-injury as an end point follow-up. Four MRI modalities were used: T2-weighted imaging, multi-gradient-echo imaging, diffusion-weighted imaging, and magnetization transfer imaging, and acquisition parameters for each modality were tailored to account for the different field strengths (4.7 T and 7 T) and different MR hardwares used at the three participating centers. Pilot data collection resulted in comparable image quality across sites. In interim analysis (of data obtained by April 30, 2018), the within-site variation of the quantified signal properties was low, while some differences between sites remained. In T2-weighted images the signal-to-noise ratios were high at each site, being 35 at UEF, 48 at Melbourne, and 32 at UCLA (p < 0.05). The contrast-to-noise ratios were similar between the sites (9, 10, and 8, respectively). Magnetization transfer ratio maps had identical white matter/ gray matter contrast between the sites, with white matter showing 15% higher MTR than gray matter despite different absolute MTR values (MTR both in white and gray matter was 3% lower in Melbourne than at UEF, p < 0.05). Diffusion-weighting yielded different degrees of signal attenuation across sites, being 83% at UEF, 76% in Melbourne, and 80% at UCLA (p < 0.05). Fractional anisotropy values differed as well, being 0.81 at UEF, 0.73 in Melbourne, and 0.84 at UCLA (p < 0.05). The obtained values in sham animals showed low variation within each site and no change over time, suggesting high repeatability of the measurements. Quality control scans with phantoms demonstrated stable hardware performance over time. Timing of post-TBI scans was designed to target specific phases of the dynamic pathology, and the execution at different centers was highly accurate. Besides a few outliers, the 2-day scans were done within an hour from the target time point. At day 9, most animals were scanned within an hour from the target time point, and all but 2 outliers within 24 h from the target. The 1-month post-TBI scans were done within 31 ± 3 days. MRI procedures and animal physiology during scans were similar between the sites. Taken together, the 10% inter-site difference in FA and 3% difference in MTR values should be included into analysis as a covariate or balanced out in post-processing in order to detect disease-related effects on brain structure at the same scale. However, for a MRI biomarker for post-traumatic epileptogenesis to have realistic chance of being successfully translated to validation in clinical trials, it would need to be a robust TBI-induced structural change which tolerates the inter-site methodological variability described here.


Subject(s)
Brain Injuries, Traumatic/complications , Brain/diagnostic imaging , Epilepsy/diagnostic imaging , Epilepsy/etiology , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Animals , Anisotropy , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Electroencephalography , Longitudinal Studies , Male , Rats , Rats, Sprague-Dawley , Time Factors
19.
Epilepsy Res ; 150: 17-26, 2019 02.
Article in English | MEDLINE | ID: mdl-30605864

ABSTRACT

The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is a National Institutes for Neurological Diseases and Stoke funded Centers-Without-Walls international multidisciplinary study aimed at preventing epileptogenesis. The preclinical biomarker discovery in EpiBios4Rx applies a multicenter study design to allow the number of animals that are required for adequate statistical power for the analysis to be studied in an efficient manner. Further, the use of multiple centers mimics the clinical trial situation, and therefore potentially the chance of successful clinical translation of the outcomes of the study. Its successful implementation requires harmonization of procedures and data analyses between the three contributing centers in Finland, Australia, and USA. The objective of the present analysis was to develop metrics for analysis of the success of harmonization of procedures to guide further data analyses and plan the future multicenter preclinical studies. The interim analysis of data is based on the analysis of data from 212 rats with lateral fluid-percussion injury or sham-operation included in the biomarker discovery by April 30, 2018. The details of protocols, including production of injury, post-injury follow-up, blood sampling, electroencephalogram recording, and magnetic resonance imaging have been presented in the accompanying manuscripts in this Supplement. Implementation of protocols in EpiBios4Rx project participant centers was visualized in 2D using t-distributed stochastic neighborhood embedding (t-SNE). The protocols applied to each rat were presented as feature vectors of procedure related variables (e.g., impact pressure, anesthesia time). The total number of protocol features linked to each rat was 112. The missing data was accounted in visualization by utilizing imputation and adding the number of missing values as a third dimension to 2D t-SNE plot, resulting in a 3D overview of protocol data. Intraclass correlation coefficient (ICC) using Euclidean distances and area under receiver operating characteristic curve (AUC) of k-nearest neighbor classifier (KNN) were utilized to quantify the degree of clustering by center. Both subsets of data with incomplete protocol vectors omitted and missing protocol data imputed were assessed. Our data show that a visible clustering by center was observed in all t-SNE plots, except for day 7 neuroscores. Both ICC and AUC indicated clustering by center in all protocol variable subsets, excluding unimputed day 7 neuroscores (ICC 0.04 and AUC 0.6). ICC for imputed set of all protocol related variables was 0.1 and KNN AUC 0.92. In conclusion, both ICC and AUC indicated differences in protocol between EpiBios4Rx participating centers, which needs to be taken into account in data analysis. Importantly, the majority of observed differences are recoverable as they relate to insufficient updates in record keeping. While AUC score of KNN is a more sensitive measure for protocol harmonization than ICC for data that displays complex splintered clustering, ICC and AUC provide complementary measures to assess the degree of procedural harmonization. This experience should be helpful for other groups planning such multicenter post-traumatic epileptogenesis studies in the future.


Subject(s)
Biomarkers , Brain Injuries, Traumatic/complications , Computational Biology , Epilepsy/diagnosis , Epilepsy/etiology , Algorithms , Animals , Area Under Curve , Biomedical Research , Electroencephalography , Follow-Up Studies , Humans , International Cooperation , Male , Rats , Statistics, Nonparametric
20.
Neurobiol Dis ; 123: 75-85, 2019 03.
Article in English | MEDLINE | ID: mdl-30321600

ABSTRACT

Posttraumatic epilepsy (PTE) is a major neurodegenerative disease accounting for 20% of symptomatic epilepsy cases. A long latent phase offers a potential window for prophylactic treatment strategies to prevent epilepsy onset, provided that the patients at risk can be identified. Some promising imaging biomarker candidates for posttraumatic epileptogenesis have been identified, but more are required to provide the specificity and sensitivity for accurate prediction. Experimental models and preclinical longitudinal, multimodal imaging studies allow follow-up of complex cascade of events initiated by traumatic brain injury, as well as monitoring of treatment effects. Preclinical imaging data from the posttraumatic brain are rich in information, yet examination of their specific relevance to epilepsy is lacking. Accumulating evidence from ongoing preclinical studies in TBI support insight into processes involved in epileptogenesis, e.g. inflammation and changes in functional and structural brain-wide connectivity. These efforts are likely to produce both new biomarkers and treatment targets for PTE.


Subject(s)
Biomarkers , Brain Injuries, Traumatic/diagnostic imaging , Brain/diagnostic imaging , Epilepsy, Post-Traumatic/diagnostic imaging , Neuroimaging , Animals , Brain Injuries, Traumatic/complications , Disease Progression , Encephalitis/diagnostic imaging , Encephalitis/etiology , Epilepsy, Post-Traumatic/etiology , Humans , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...