Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Genomics ; 16(1): 335, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38129828

ABSTRACT

BACKGROUND: Psoriasis is a chronic, autoimmune, papulosquamous skin disorder, characterized by the formation of drop-like papules and silvery-white plaques surrounded by reddened or inflamed skin, existing predominantly on the scalp, knees and elbows. The characteristic inflammation and hyperproliferation of keratinocytes in psoriasis is regulated by progranulin (PGRN), which suppresses the expression and release of inflammatory cytokines, such as TNF-α. METHODOLOGY: In this study mutation analysis of the PGRN gene was performed by extracting the genomic DNA from blood samples of 171 diagnosed psoriasis patients and controls through standard salting-out method, followed by amplification and sequencing of the targeted region of exon 5-7 of PGRN gene. RESULTS: Three single nucleotide polymorphisms, rs25646, rs850713 and a novel point mutation 805A/G were identified in the PGRN gene with significant association with the disease. The variant alleles of the polymorphisms were significantly distributed among cases and controls, and statistical analysis suggested that the mutant genotypes conferred a higher risk of psoriasis development and progression. Multi-SNP haplotype analysis indicated that the CAA (OR = 8.085, 95% CI = 5.16-12.66) and the CAG (OR = 3.204, 95% CI = 1.97-5.21) haplotypes were significantly associated with psoriasis pathogenesis. CONCLUSIONS: These findings demonstrate that polymorphisms in PGRN might act as potential molecular targets for early diagnosis of psoriasis in susceptible individuals.


Subject(s)
Intercellular Signaling Peptides and Proteins , Psoriasis , Humans , Case-Control Studies , Intercellular Signaling Peptides and Proteins/genetics , Mutation , Pakistan , Progranulins/genetics , Psoriasis/genetics
2.
Front Toxicol ; 2: 601149, 2020.
Article in English | MEDLINE | ID: mdl-35296120

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are ubiquitously found in the environment due to their widespread commercial use and high chemical stability. Humans are exposed primarily through ingestion of contaminated water and food and epidemiological studies over the last several decades have shown that PFAS levels are associated with adverse chronic health effects, including cardiometabolic disorders such as hyperlipidemia and non-alcoholic fatty liver disease. Perhaps the most well-established effects, as demonstrated in animal studies and human epidemiological studies, are the metabolic alterations PFAS exposure can lead to, especially on lipid homeostasis and signaling. This altered lipid metabolism has often been linked to conditions such as dyslipidemia, leading to fatty liver disease and steatosis. Western diets enriched in high fat and high cholesterol containing foods may be an important human exposure route of PFAS and may also act as an important modulator of associated toxicities. In fact, the chemical structure of PFAS resemble fatty acids and may activate some of the same signaling cascades critical for endogenous metabolism. In this review we aim to outline known dietary exposure sources of PFAS, describe the detrimental metabolic health effects associated with PFAS exposure, and focus on studies examining emerging interaction of dietary effects with PFAS exposure that further alter the dysregulated metabolic state.

SELECTION OF CITATIONS
SEARCH DETAIL
...