Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 13(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38392845

ABSTRACT

Mosquitoes harbor a wide diversity of microorganisms, including viruses that are human pathogens, or that are insect specific. We used metatranscriptomics, an unbiased high-throughput molecular approach, to describe the composition of viral and other microbial communities in six medically important mosquito species from across Western Australia: Aedes vigilax, Culex annulirostris, Cx. australicus, Cx. globocoxitus, Cx. pipiens biotype molestus, and Cx. quinquefasciatus. We identified 42 viral species, including 13 novel viruses, from 19 families. Culex mosquitoes exhibited a significantly higher diversity of viruses than Aedes mosquitoes, and no virus was shared between the two genera. Comparison of mosquito populations revealed a heterogenous distribution of viruses between geographical regions and between closely related species, suggesting that geography and host species may play a role in shaping virome composition. We also detected bacterial and parasitic microorganisms, among which Wolbachia bacteria were detected in three members of the Cx. pipiens complex, Cx. australicus, Cx. pipiens biotype molestus, and Cx. quinquefasciatus. In summary, our unbiased metatranscriptomics approach provides important insights into viral and other microbial diversity in Western Australian mosquitoes that vector medically important viruses.

2.
Pediatr Infect Dis J ; 43(6): 532-535, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38421196

ABSTRACT

This study highlights the importance of human milk in providing anti-severe acute respiratory syndrome coronavirus 2 immunity to newborns. The highest protective activity of human milk against COVID-19 was found in colostrum from infected mothers. Neutralizing activity was associated with high levels of specific IgA. Depletion of IgA, but not IgG, from milk samples completely abolished the ability of human milk to neutralize severe acute respiratory syndrome coronavirus 2.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Colostrum , Immunoglobulin A , Immunoglobulin G , Milk, Human , SARS-CoV-2 , Humans , Milk, Human/immunology , Milk, Human/virology , COVID-19/immunology , COVID-19/prevention & control , Female , Immunoglobulin G/blood , SARS-CoV-2/immunology , Immunoglobulin A/analysis , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Colostrum/immunology , Infant, Newborn , Adult , Pregnancy , Mothers
3.
Viruses ; 16(1)2023 12 20.
Article in English | MEDLINE | ID: mdl-38275942

ABSTRACT

Sindbis virus (SINV) is a widely dispersed mosquito-borne alphavirus. Reports of Sindbis disease are largely restricted to northern Europe and South Africa. SINV is frequently sampled in Australian mosquito-based arbovirus surveillance programs, but human disease has rarely been reported. Molecular epidemiological studies have characterized six SINV genotypes (G1-G6) based on E2 gene phylogenies, mostly comprising viruses derived from the African-European zoogeographical region and with limited representation of Australasian SINV. In this study, we conducted whole genome sequencing of 66 SINV isolates sampled between 1960 and 2014 from countries of the Australasian region: Australia, Malaysia, and Papua New Guinea. G2 viruses were the most frequently and widely sampled, with three distinct sub-lineages defined. No new G6 SINV were identified, confirming geographic restriction of these viruses to south-western Australia. Comparison with global SINV characterized large-scale nucleotide and amino acid sequence divergence between African-European G1 viruses and viruses that circulate in Australasia (G2 and G3) of up to 26.83% and 14.55%, respectively, divergence that is sufficient for G2/G3 species demarcation. We propose G2 and G3 are collectively a single distinct alphavirus species that we name Argyle virus, supported by the inapparent or mild disease phenotype and the higher evolutionary rate compared with G1. Similarly, we propose G6, with 24.7% and 12.61% nucleotide and amino acid sequence divergence, is a distinct alphavirus species that we name Thomson's Lake virus.


Subject(s)
Culicidae , Sindbis Virus , Animals , Humans , Sindbis Virus/genetics , Australia , Genomics , Nucleotides
SELECTION OF CITATIONS
SEARCH DETAIL