Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Mammal ; 104(2): 265-278, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37032704

ABSTRACT

Dispersal has important implications for population ecology and genetics of a species through redistribution of individuals. In most mammals, males leave their natal area before they reach sexual maturity, whereas females are commonly philopatric. Here, we investigate the patterns of natal dispersal in the Asian black bear (Ursus thibetanus) based on data from 550 bears (378 males, 172 females) captured or removed in Gunma and Tochigi prefectures on central Honshu Island, Japan in 2003-2018. We used genetic data and parentage analysis to investigate sex-biased differences in the distance of natal dispersal. We further investigated the age of dispersal using spatial autocorrelation analysis, that is, the change in the correlation between genetic and geographic distances in each sex and age group. Our results revealed that male dispersal distances (mean ± SE = 17.4 ± 3.5 km) were significantly farther than female distances (4.8 ± 1.7 km), and the results were not affected by years of mast failures, a prominent forage source for this population. Based on an average adult female home range radius of 1.8 km, 96% of the males and 50% of the females dispersed. In the spatial autocorrelation analysis, the changes in the relationship between genetic and geographic distances were more pronounced in males compared to females. Males seem to mostly disperse at age 3 regardless of mast productivity, and they gradually disperse far from their home range, but young and inexperienced males may return to their natal home range in years with poor food conditions. The results suggest that factors driving the dispersal process seem to be population structure-based instead of forage availability-based. In females, a significant genetic relationship was observed among all individuals in the group with a minimum age of 6 years within a distance of 2 km, which resulted in the formation of matrilineal assemblages.

2.
J Mammal ; 104(1): 184-193, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36876239

ABSTRACT

In recent years, animal-borne video cameras have been used to identify the food habits of many species. However, the usefulness and difficulties of identifying food habits from animal-borne video cameras have not been sufficiently discussed in terrestrial mammals, especially large omnivores. The aim of this study is to compare the video analysis of foraging behavior by Asian black bears (Ursus thibetanus) acquired by camera collars with estimates from fecal analysis. We attached GPS collars equipped with video cameras to four adult Asian black bears in the Okutama mountains in central Japan from May to July 2018 and analyzed video clips for foraging behavior. Simultaneously, we collected bear feces in the same area to determine food habits. We found that using video analyses was advantageous to recognize foods, such as leaves or mammals, that were physically crushed or destroyed while bears chewed and digested foods, which are difficult to identify to species using fecal analyses. On the other hand, we found that camera collars are less likely to record food items that are infrequently or quickly ingested. Additionally, food items with a low frequency of occurrence and short foraging time per feeding were less likely to be detected when we increased the time between recorded clips. As one of the first applications of the video analysis method for bears, our study shows that video analysis can be an important method for revealing individual differences in diet. Although video analysis may have limitations for understanding the general foraging behavior of Asian black bears at the present stage, the accuracy of food habit data from camera collars can be improved by using it in combination with established techniques such as microscale behavior analyses.

3.
Sci Rep ; 12(1): 16451, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180480

ABSTRACT

Scavenging is a common feeding behavior that provides ecosystem services by removing potentially infectious waste from the landscape. The importance of facultative scavenging is often overlooked, but likely becomes especially important in ecosystems without obligate scavengers. Here, we investigated the ecological function of vertebrate facultative scavengers in removing ungulate carcasses from Japanese forests that lack obligate scavengers. We found that mammals detected carcasses first more often than birds, and that raccoon dogs (Nyctereutes procyonoides) were the most frequent scavenger to first detect carcasses. However, we found no evidence of there being species that signal the location of carrion to other species via social cues. Instead, higher temperatures promoted earlier detection of the carcasses by scavengers, likely related to increased olfactory signals. The carcasses were completely consumed on average in 7.0 days, reasonably similar to other systems regardless of habitat, indicating that facultative scavengers are providing ecosystem services. Larger carcasses tended to take longer to deplete, but carcasses were consumed faster in warmer temperatures. Our results indicate that facultative scavengers were capable of consuming carrion and contributing ecosystem services in a forest ecosystem that lacks obligate scavengers.


Subject(s)
Ecosystem , Food Chain , Animals , Feeding Behavior , Fishes , Forests , Mammals , Vertebrates
4.
Ecology ; 102(12): e03519, 2021 12.
Article in English | MEDLINE | ID: mdl-34449876

ABSTRACT

Species assemblages often have a non-random nested organization, which in vertebrate scavenger (carrion-consuming) assemblages is thought to be driven by facilitation in competitive environments. However, not all scavenger species play the same role in maintaining assemblage structure, as some species are obligate scavengers (i.e., vultures) and others are facultative, scavenging opportunistically. We used a database with 177 vertebrate scavenger species from 53 assemblages in 22 countries across five continents to identify which functional traits of scavenger species are key to maintaining the scavenging network structure. We used network analyses to relate ten traits hypothesized to affect assemblage structure with the "role" of each species in the scavenging assemblage in which it appeared. We characterized the role of a species in terms of both the proportion of monitored carcasses on which that species scavenged, or scavenging breadth (i.e., the species "normalized degree"), and the role of that species in the nested structure of the assemblage (i.e., the species "paired nested degree"), therefore identifying possible facilitative interactions among species. We found that species with high olfactory acuity, social foragers, and obligate scavengers had the widest scavenging breadth. We also found that social foragers had a large paired nested degree in scavenger assemblages, probably because their presence is easier to detect by other species to signal carcass occurrence. Our study highlights differences in the functional roles of scavenger species and can be used to identify key species for targeted conservation to maintain the ecological function of scavenger assemblages.


Subject(s)
Falconiformes , Food Chain , Animals , Fishes , Phenotype , Vertebrates
5.
Ecol Evol ; 11(14): 9182-9190, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306614

ABSTRACT

Previous studies on the mating system of the Asian black bear (Ursus thibetanus) have been limited to observations of captive populations and estimations of multiple paternities. Hence, the mating system of wild bears remains poorly understood. Animal-borne camera systems (i.e., cameras mounted on animals) provide novel tools to study the behavior of elusive animals. Here, we used an animal-borne video system to record the activities of wild bears during the mating season. Video camera collars were attached to four adult Asian black bears (male "A" and "B," and female "A" and "B") captured in Tokyo, central Japan, in May and June 2018. The collars were retrieved in July 2018, after which the video data were downloaded and analyzed in terms of bear activity and mating behavior. All the bears were found to interact with other uniquely identifiable bears for some of the time (range 9-22 days) during the deployment period (range 36-45 days), and multiple mating in males was documented. Both males and females exhibited different behaviors on social days (i.e., days when the bear interacted with conspecifics) compared with solitary days (i.e., days with no observed interactions with conspecifics). Compared with solitary days, the bears spent a lower proportion of time on foraging activities and higher proportion of time on resting activities on social days. Our results suggest that Asian black bears have a polygamous mating system, as both sexes consort and potentially mate with multiple partners during a given mating season. Furthermore, bears appeared to reduce their foraging activities on social days and engaged more in social interactions.

6.
Ecol Evol ; 10(3): 1223-1232, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32076509

ABSTRACT

Scavenging is a common feeding behavior by many species that plays an important role in ecosystem stability and function while also providing ecosystem services. Despite its importance, facultative scavenging on large animal carcasses has generally been overlooked in Asian temperate forest ecosystems. The aim of this study was to determine the composition and feeding behavior of the facultative scavenger guild as it relates to sika deer (Cervus nippon) carcasses in Japanese forests. There are no obligate scavengers or large predators that kill adult ungulates, but humans fill the role of large predators by culling deer for population management. We documented nine vertebrate species scavenging on deer carcasses and found that mammals were more frequent scavengers than birds and also fed for longer durations. This result suggests that there is a facultative scavenger guild composed mainly of mammals in our forest ecosystem and that carcass utilization by birds was restricted to only forest species. Raccoon dogs (Nyctereutes procyonoides) and Asian black bears (Ursus thibetanus) were the most frequent scavenger species and also fed for longer durations than other scavengers. There were significant seasonal differences in scavenging by Asian black bear, Japanese marten (Martes melampus), and mountain hawk-eagle (Nisaetus nipalensis), suggesting the availability of other food resources may alter facultative scavenging by each species. Our results support that scavenging is widespread in this system and likely has important functions including building links in the food web.

7.
PLoS One ; 14(12): e0226078, 2019.
Article in English | MEDLINE | ID: mdl-31805107

ABSTRACT

Because animal feces contain organic matter and plant seeds, dung beetles (Scarabaeinae) are important for the circulation of materials and secondary seed dispersal through burying feces. Dung beetles are usually generalists and use the feces of various mammals. Additionally, the larval stages have access to feces from only one mammal species leaving them susceptible to changes in animal fauna and variations in animal populations. Here, we explain the effects of resource availability changes associated with sika deer (Cervus nippon) overabundance on dung beetle larvae feeding habits in Japan. δ15N values were notably higher in raccoon dog and badger dung than in that of other mammals. A dung beetle breeding experiment revealed that the δ15N values of dung beetle exoskeletons that had fed on deer feces during their larval stage were significantly lower than those of beetles that had fed on raccoon dog feces. The δ15N values of the adult exoskeleton were significantly lower in a deer high-density area than in a low-density area in large dung beetles only. It is possible that the high-quality feces, such as those of omnivores, preferred by the large beetles decrease in availability with an increase in deer dung; large beetles may therefore be unable to obtain sufficient high-quality feces and resort to using large amounts of low-quality deer feces. Small dung beetles may use the easily obtained feces that is in high abundance and they may also use deer feces more frequently with increases in deer density. These findings suggest that a larval resource shift associated with deer overabundance may affect ecosystem functions such as soil nutrient cycling and seed dispersal.


Subject(s)
Coleoptera/physiology , Deer , Larva/physiology , Seed Dispersal , Animals , Breeding , Feces/chemistry , Nitrogen Isotopes/analysis , Population Density
8.
PLoS One ; 14(2): e0211561, 2019.
Article in English | MEDLINE | ID: mdl-30716134

ABSTRACT

Cementum annuli widths in mammals are is influenced by the nutrition of mammals. Reproductive stress has been is suggested to reduce the width of lead to narrower cementum annuli widths in female Asian black bears (Ursus thibetanus); however, food availability in autumn strongly impacts bear nutrition and likely impacts cementum widths as well. This study aimed to test how cementum annuli widths and the formation of false annuli were influenced by hard mast production. We established two hypotheses: (1) cementum annuli widths become narrower in poor mast years owing to inadequate nutritional conditions and (2) false annuli occur more frequently in poor mast years. We used teeth samples from male bears to avoid reproductive influences and separated width data into "adult" and "subadult" groups. We calculated the proportional width index (PWI) and used linear mixed models to estimate the masting effects on PWI. Generalized linear mixed models estimated the masting effects on false annuli frequency. True annuli widths and false annuli formation showed no significant relationship with mast production in adults. In subadults, poor mast production weak negative influence on false annuli formation. These new data resolve previous questions, allowing us to deduce that cementum annuli widths are a reliable index of reproductive success in female bears.


Subject(s)
Dental Cementum/metabolism , Ursidae/anatomy & histology , Ursidae/growth & development , Animals , Female , Food , Male , Ursidae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...