Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 6(1): 287-301, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38125608

ABSTRACT

In a stride towards sustainable solutions, this research endeavors to address the critical issue of water pollution via heavy metals by coupling the power of magnetic nanotechnology, in combination with a green chemistry approach, to eliminate two noxious inorganic pollutants: chromium(vi) and nickel(ii) from aqueous environments. The synthesis of magnetite (Fe3O4) nanoparticles was achieved using ferric chloride hexahydrate (FeCl3·6H2O) as a precursor, with the assistance of Ziziphus mauritiana Lam. leaves extract, known for its remarkable salt-reducing properties. A range of bio-adsorbents, derived from corncob biomass, corncob pyrolyzed biochar, and magnetite/corncob biochar nanocomposite (NC), were engineered for their eco-friendly and biocompatible characteristics. Extensive parametric optimizations, including variations in pH, contact time, dose rate, and concentration, were carried out to gain insights into the adsorption behavior and capacity of these bioadsorbents concerning Cr(vi) and Ni(ii). Equilibrium and kinetic studies were undertaken to comprehensively understand the adsorption dynamics. In the case of Ni(ii), the Freundlich isotherm model provided a satisfactory fit for all bio-adsorbents, demonstrating R2 values of 0.91, 0.95, and 0.96 for BM, BC, and NC, respectively. Furthermore, the pseudo 1st order model emerged as the most suitable fit for Cr(vi) sequestration in corncob BM with an R2 value of 0.98, while pseudo 2nd order models were robustly fitted for BC and NC, yielding R2 values of 0.88 and 0.99, respectively. The magnetite/corncob nanocomposite outperformed other bioadsorbents in removing heavy metals from wastewater due to its environmental friendliness, larger surface area, reusability, and cost-effectiveness at an industrial scale.

2.
Chemosphere ; 301: 134711, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35487351

ABSTRACT

Bacterial contamination is one of the leading causes of water pollution. Antibacterial polyurethane/cellulose acetate membranes modified by functionalized TiO2 nanoparticles were processed and studied. TiO2 nanoparticles were prepared and ultraviolet (UV) irradiated to activate their photocatalytic activity against Escherichia coli (E. Coil) and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Functionalized TiO2 nanoparticles were incorporated in flat-sheet mixed matrix membranes (MMMs). These membranes were characterized for their different properties such as morphology, thermal stability, mechanical strength, surface wettability, water retention, salt rejection, water flux, and their antibacterial performance against E. Coil and MRSA was also tested. The activity of nanoparticles against MRSA and E. coli was analyzed using three different concentrations, 0.5 wt%, 1.0 wt% and 1.5 wt% of nanoparticles and 0.5 wt% of TiO2 nanoparticles showed maximum growth of bacteria. The maximum inhibition was observed in membranes with maximum nanoparticles when compared with other membranes. All these characteristics were strongly affected by increasing the concentration of TiO2 nanoparticles in the prepared membranes and the duration of their UV exposure. Hence, it was proved from this analysis that these TiO2 modified membranes exhibit substantial antibacterial properties. The results are supporting the utilization of these materials for water purification purposes.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Water Purification , Anti-Bacterial Agents/pharmacology , Cellulose/analogs & derivatives , Escherichia coli , Polyurethanes , Titanium/pharmacology
3.
ACS Omega ; 6(6): 4335-4346, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33623844

ABSTRACT

In bone tissue engineering, multifunctional composite materials are very challenging. Bone tissue engineering is an innovative technique to develop biocompatible scaffolds with suitable orthopedic applications with enhanced antibacterial and mechanical properties. This research introduces a polymeric nanocomposite scaffold based on arabinoxylan-co-acrylic acid, nano-hydroxyapatite (nHAp), nano-aluminum oxide (nAl2O3), and graphene oxide (GO) by free-radical polymerization for the development of porous scaffolds using the freeze-drying technique. These polymeric nanocomposite scaffolds were coated with silver (Ag) nanoparticles to improve antibacterial activities. Together, nHAp, nAl2O3, and GO enhance the multifunctional properties of materials, which regulate their physicochemical and biomechanical properties. Results revealed that the Ag-coated polymeric nanocomposite scaffolds had excellent antibacterial properties and better microstructural properties. Regulated morphological properties and maximal antibacterial inhibition zones were found in the porous scaffolds with the increasing amount of GO. Moreover, the nanosystem and the polymeric matrix have improved the compressive strength (18.89 MPa) and Young's modulus (198.61 MPa) of scaffolds upon increasing the amount of GO. The biological activities of the scaffolds were investigated against the mouse preosteoblast cell lines (MC3T3-E1) and increasing the quantities of GO helps cell adherence and proliferation. Therefore, our findings showed that these silver-coated polymeric nanocomposite scaffolds have the potential for engineering bone tissue.

4.
Materials (Basel) ; 13(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212761

ABSTRACT

High uric acid levels cause different clinic conditions. One of them is hyperuricemia, which leads to kidney damage. A solution for eliminating uric acid in the blood is by hemodialysis, which is performed using nanocomposite membranes. In this work, Nylon 6 nanocomposites were synthesized with modified carbon black (MCB), which were considered candidate materials for hemodialysis membranes. The modification of carbon black was made with citric acid using the variable-frequency ultrasound method. The new MCB was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), and dispersion tests. Nylon 6/MCB nanocomposites were processed using the ultrasound-assisted melt-extrusion method to improve the dispersion procedure of the nanoparticles. The Nylon 6/MCB nanocomposites were characterized by FTIR, TGA, and differential scanning calorimetry (DSC). These were assessed for the absorption of toxins and hemocompatibility. MBC and nanocomposites showed excellent uric acid removal (78-82%) and hemocompatibility (1.6-1.8%). These results suggest that Nylon 6/MCB nanocomposites with low loading percentages can be used on a large scale without compatibility problems with blood.

5.
Molecules ; 25(13)2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32605124

ABSTRACT

Multiwall carbon nanotube (CNT)-filled high density polyethylene (HDPE) nanocomposites were prepared by extrusion and considered for their suitability in the offshore sheathing applications. Transmission electron microscopy was conducted to analyse dispersion after bulk extrusion. Monolithic and nanocomposite samples were subjected to accelerated weathering and photodegradation (carbonyl and vinyl indices) characterisations, which consisted of heat, moisture (seawater) and UV light, intended to imitate the offshore conditions. The effects of accelerated weathering on mechanical properties (tensile strength and elastic modulus) of the nanocomposites were analysed. CNT addition in HDPE produced environmentally resilient nanocomposites with improved mechanical properties. The energy utilised to extrude nanocomposites was also less than the energy used to extrude monolithic HDPE samples. The results support the mass substitution of CNT-filled HDPE nanocomposites in high-end offshore applications.


Subject(s)
Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Polyethylene/chemistry , Elastic Modulus/drug effects , Elastic Modulus/radiation effects , Hot Temperature/adverse effects , Materials Testing , Microscopy, Electron, Transmission , Nanocomposites/radiation effects , Nanotubes, Carbon/radiation effects , Polyethylene/radiation effects , Seawater/adverse effects , Tensile Strength/drug effects , Tensile Strength/radiation effects , Ultraviolet Rays/adverse effects
6.
Molecules ; 24(17)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31480573

ABSTRACT

A novel tweakable nanocomposite was prepared by spark plasma sintering followed by systematic oxidation of carbon nanotube (CNT) molecules to produce alumina/carbon nanotube nanocomposites with surface porosities. The mechanical properties (flexural strength and fracture toughness), surface area, and electrical conductivities were characterized and compared. The nanocomposites were extensively analyzed by field emission scanning electron microscopy (FE-SEM) for 2D qualitative surface morphological analysis. Adding CNTs in ceramic matrices and then systematically oxidizing them, without substantial reduction in densification, induces significant capability to achieve desirable/application oriented balance between mechanical, electrical, and catalytic properties of these ceramic nanocomposites. This novel strategy, upon further development, opens new level of opportunities for real-world/industrial applications of these relatively novel engineering materials.


Subject(s)
Ceramics/chemistry , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Aluminum Oxide/chemistry , Electric Conductivity , Nanocomposites/ultrastructure , Nanotubes, Carbon/ultrastructure
7.
R Soc Open Sci ; 4(10): 170778, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29134080

ABSTRACT

It is generally recognized that dimethylformamide (DMF) and ethanol are good media to uniformly disperse graphene, and therefore have been used widely in the preparation of epoxy/graphene nanocomposites. However, as a solvent to disperse graphene, dichlorobenzene (DCB) has not been fully realized by the polymer community. Owing to high values of the dispersion component (δd) of the Hildebrand solubility parameter, DCB is considered as a suitable solvent for homogeneous graphene dispersion. Therefore, epoxy/graphene nanocomposites have been prepared for the first time with DCB as a dispersant; DMF and ethanol have been chosen as the reference. The colloidal stability, mechanical properties, thermogravimetric analysis, dynamic mechanical analysis and scanning electron microscopic images of nanocomposites have been obtained. The results show that with the use of DCB, the tensile strength of graphene has been improved from 64.46 to 69.32 MPa, and its flexural strength has been increased from 97.17 to 104.77 MPa. DCB is found to be more effective than DMF and ethanol for making stable and homogeneous graphene dispersion and composites.

8.
Polymers (Basel) ; 9(1)2017 Jan 14.
Article in English | MEDLINE | ID: mdl-30970704

ABSTRACT

The influence of short-term water absorption on the mechanical properties of halloysite nanotubes-multi layer graphene reinforced polyester hybrid nanocomposites has been investigated. The addition of nano-fillers significantly increased the flexural strength, tensile strength, and impact strength in dry and wet conditions. After short-term water exposure, the maximum microhardness, tensile, flexural and impact toughness values were observed at 0.1 wt % multi-layer graphene (MLG). The microhardness increased up to 50.3%, tensile strength increased up to 40% and flexural strength increased up to 44%. Compared to dry samples, the fracture toughness and surface roughness of all types of produced nanocomposites were increased that may be attributed to the plasticization effect. Scanning electron microscopy revealed that the main failure mechanism is caused by the weakening of the nano-filler-matrix interface induced by water absorption. It was further observed that synergistic effects were not effective at a concentration of 0.1 wt % to produce considerable improvement in the mechanical properties of the produced hybrid nanocomposites.

9.
Polymers (Basel) ; 9(6)2017 May 27.
Article in English | MEDLINE | ID: mdl-30970871

ABSTRACT

DMF is one the most commonly-used solvents for preparing graphene nanocomposites. Various processing variables for DMF are being used for the preparation of epoxy/graphene nanocomposites. Whilst the emphasis of all of these reported studies are on the improvements in mechanical, and other properties, of the epoxy/graphene nanocomposites, there is no study investigating how DMF affects the processing and how it is associated with the final properties of the nanocomposites. In this work, different dosages of DMF have been used to prepare nanocomposites. Mechanical testing, X-ray diffraction (XRD), dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) have been used to analyze the effectiveness of DMF dosage on the properties of processed nanocomposites. Larger dosages of DMF are not always ideal for dispersing graphene as it promotes reaggregation of graphene during the processing.

10.
Polymers (Basel) ; 9(8)2017 Jul 28.
Article in English | MEDLINE | ID: mdl-30970992

ABSTRACT

Halloysite nanotubes (HNTs)-polyester nanocomposites with four different concentrations were produced using solution casting technique and the biodegradation effect of short-term seawater exposure (120 h) was studied. Monolithic polyester was observed to have the highest seawater absorption with 1.37%. At 0.3 wt % HNTs reinforcement, the seawater absorption dropped significantly to the lowest value of 0.77% due to increase of liquid diffusion path. For samples tested in dry conditions, the Tg, storage modulus, tensile properties and flexural properties were improved. The highest improvement of Tg was from 79.3 to 82.4 °C (increase 3.1 °C) in the case of 0.3 wt % HNTs. This can be associated with the exfoliated HNTs particles, which restrict the mobility of polymer chains and thus raised the Tg. After seawater exposure, the Tg, storage modulus, tensile properties and flexural properties of polyester and its nanocomposites were decreased. The Young's modulus of 0.3 wt % HNTs-polyester dropped 20% while monolithic polyester dropped up to 24% compared to their values in dry condition. Apart from that, 29% flexural modulus reduction was observed, which was 18% higher than monolithic polyester. In contrast, fracture toughness and surface roughness increased due to plasticization effect. The presence of various microbial communities caused gradual biodegradation on the microstructure of the polyester matrix as also evidently shown by SEM images.

11.
Beilstein J Nanotechnol ; 7: 1174-1196, 2016.
Article in English | MEDLINE | ID: mdl-27826492

ABSTRACT

One of the main issues in the production of polymer nanocomposites is the dispersion state of filler as multilayered graphene (MLG) and carbon nanotubes (CNTs) tend to agglomerate due to van der Waals forces. The agglomeration can be avoided by using organic solvents, selecting suitable dispersion and production methods, and functionalizing the fillers. Another proposed method is the use of hybrid fillers as synergistic effects can cause an improvement in the dispersion state of the fillers. In this review article, various aspects of each process that can help avoid filler agglomeration and improve dispersion state are discussed in detail. This review article would be helpful for both current and prospective researchers in the field of MLG- and CNT-based polymer nanocomposites to achieve maximum enhancement in mechanical, thermal, and electrical properties of produced polymer nanocomposites.

12.
Polymers (Basel) ; 8(7)2016 Jul 01.
Article in English | MEDLINE | ID: mdl-30974525

ABSTRACT

Influence of topographical features on mechanical properties of 0.1 wt % Multi-Layer Graphene (MLG)/clay-epoxy nanocomposites has been studied. Three different compositions were made: (1) 0.1 wt % MLG-EP; (2) 0.1 wt % clay-EP and (3) 0.05 wt % MLG-0.05 wt % clay-EP. The objective of making hybrid nanocomposites was to determine whether synergistic effects are prominent at low weight fraction of 0.1 wt % causing an improvement in mechanical properties. The topographical features studied include waviness (Wa), roughness average (Ra), root mean square value (Rq) and maximum roughness height (Rmax or Rz). The Rz of as-cast 0.1 wt % MLG-EP, clay-EP and 0.05 wt % MLG-0.05 wt % clay-EP nanocomposites were 43.52, 48.43 and 41.8 µm respectively. A decrease in Rz values was observed by treating the samples with velvet cloth and abrasive paper 1200P while increased by treating with abrasive papers 320P and 60P. A weight loss of up to 16% was observed in samples after the treatment with the abrasive papers. It was observed that MLG is more effective in improving the mechanical properties of epoxy than nanoclay. In addition, no significant improvement in mechanical properties was observed in hybrid nanocomposites indicating that 0.1 wt % is not sufficient to generate conspicuous synergistic effects.

13.
Polymers (Basel) ; 8(8)2016 Aug 04.
Article in English | MEDLINE | ID: mdl-30974558

ABSTRACT

Monolithic epoxy, because of its brittleness, cannot prevent crack propagation and is vulnerable to fracture. However, it is well established that when reinforced-especially by nano-fillers, such as metallic oxides, clays, carbon nanotubes, and other carbonaceous materials-its ability to withstand crack propagation is propitiously improved. Among various nano-fillers, graphene has recently been employed as reinforcement in epoxy to enhance the fracture related properties of the produced epoxy⁻graphene nanocomposites. In this review, mechanical, thermal, and electrical properties of graphene reinforced epoxy nanocomposites will be correlated with the topographical features, morphology, weight fraction, dispersion state, and surface functionalization of graphene. The factors in which contrasting results were reported in the literature are highlighted, such as the influence of graphene on the mechanical properties of epoxy nanocomposites. Furthermore, the challenges to achieving the desired performance of polymer nanocomposites are also suggested throughout the article.

14.
ACS Comb Sci ; 16(8): 397-402, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25075969

ABSTRACT

A magnetically separable, active nickel hydroxide (Brønsted base) coated nanocobalt ferrite catalyst has been developed for oxidation of alcohols. High surface area was achieved by tuning the particle size with surfactant. The surface area of 120.94 m2 g(-1) has been achieved for the coated nanocobalt ferrite. Improved catalytic activity and selectivity were obtained by synergistic effect of transition metal hydroxide (basic hydroxide) on nanocobalt ferrite. The nanocatalyst oxidizes primary and secondary alcohols efficiently (87%) to corresponding carbonyls in good yields.


Subject(s)
Alcohols/chemistry , Cobalt/chemistry , Ferric Compounds/chemistry , Hydroxides/chemistry , Magnets/chemistry , Nanostructures/chemistry , Nickel/chemistry , Catalysis , Magnetic Phenomena , Oxidation-Reduction , Particle Size
15.
Acta Biomater ; 7(2): 791-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20883835

ABSTRACT

The synthesis of high-strength, completely dense nanograined hydroxyapatite (bioceramic) monoliths is a challenge as high temperatures or long sintering times are often required. In this study, nanorods of hydroxyapatite (HA) and calcium-deficient HA (made using a novel continuous hydrothermal flow synthesis method) were consolidated using spark plasma sintering (SPS) up to full theoretical density in ∼5 min at temperatures up to 1000°C. After significant optimization of the SPS heating and loading cycles, fully dense HA discs were obtained which were translucent, suggesting very high densities. Significantly high three-point flexural strength values for such materials (up to 158 MPa) were measured. Freeze-fracturing of disks followed by scanning electron microscopy investigation revealed selected samples possessed sub-200 nm sized grains and no visible pores, suggesting they were fully dense.


Subject(s)
Hydroxyapatites/chemistry , Materials Testing/methods , Nanotubes/chemistry , Plasma Gases/chemistry , Temperature , Water/chemistry , Light , Nanotubes/ultrastructure , Particle Size , Scattering, Radiation , X-Ray Diffraction
16.
J R Soc Interface ; 7(52): 1641-5, 2010 Nov 06.
Article in English | MEDLINE | ID: mdl-20200035

ABSTRACT

Spark plasma sintering has been used for the first time to prepare the ASTM F75 cobalt-chromium-molybdenum (Co-Cr-Mo) orthopaedic alloy composition using nanopowders. In the preliminary work presented in this report, the effect of processing variables on the structural features of the alloy (phases present, grain size and microstructure) has been investigated. Specimens of greater than 99.5 per cent theoretical density were obtained. Carbide phases were not detected in the microstructure but oxides were present. However, harder materials with finer grains were produced, compared with the commonly used cast/wrought processing methods, probably because of the presence of oxides in the microstructure.


Subject(s)
Metal Nanoparticles/chemistry , Orthopedic Equipment , Vitallium/chemistry , Joint Prosthesis , Materials Testing , Metallurgy/methods , Surface Properties
17.
Nanotechnology ; 19(19): 195710, 2008 May 14.
Article in English | MEDLINE | ID: mdl-21825728

ABSTRACT

Carbon nanotube (CNT) and alumina dispersions were prepared separately in dimethylformamide (DMF) and ethanol by ultrasonication. The colloidal stability of the dispersions was monitored and a particle size analysis was performed to evaluate the size range of the agglomerates after different times. DMF was found to be a much more effective dispersant than ethanol for making stable, homogeneous CNT and composite dispersions. Alumina-CNT (4.65 vol%) nanocomposites were sintered in a spark plasma sintering (SPS) furnace. DMF dispersions produced homogeneously distributed and agglomerate-free CNT-alumina nanocomposites with higher electrical conductivity as compared to nanocomposites prepared using ethanol.

SELECTION OF CITATIONS
SEARCH DETAIL
...