Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Transl Psychiatry ; 14(1): 216, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806495

ABSTRACT

Genetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.


Subject(s)
Bipolar Disorder , Body Temperature , Cadherins , Disease Models, Animal , Locomotion , Mice, Knockout , Animals , Male , Mice , Behavior, Animal , Bipolar Disorder/genetics , Bipolar Disorder/physiopathology , Cadherins/genetics , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Locomotion/genetics , Mice, Inbred C57BL , Prepulse Inhibition/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Protocadherins
2.
Biochem Biophys Res Commun ; 708: 149800, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38522402

ABSTRACT

Previous human and rodent studies indicated that nociceptive stimuli activate many brain regions that is involved in the somatosensory and emotional sensation. Although these studies have identified several important brain regions involved in pain perception, it has been a challenge to observe neural activity directly and simultaneously in these multiple brain regions during pain perception. Using a transgenic mouse expressing G-CaMP7 in majority of astrocytes and a subpopulation of excitatory neurons, we recorded the brain activity in the mouse cerebral cortex during acute pain stimulation. Both of hind paw pinch and intraplantar administration of formalin caused strong transient increase of the fluorescence in several cortical regions, including primary somatosensory, motor and retrosplenial cortex. This increase of the fluorescence intensity was attenuated by the pretreatment with morphine. The present study provides important insight into the cortico-cortical network during pain perception.


Subject(s)
Acute Pain , Animals , Mice , Humans , Somatosensory Cortex , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Gyrus Cinguli , Diagnostic Imaging
3.
Transl Psychiatry ; 14(1): 138, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453903

ABSTRACT

Whole genome analysis has identified rare copy number variations (CNV) that are strongly involved in the pathogenesis of psychiatric disorders, and 3q29 deletion has been found to have the largest effect size. The 3q29 deletion mice model (3q29-del mice) has been established as a good pathological model for schizophrenia based on phenotypic analysis; however, circadian rhythm and sleep, which are also closely related to neuropsychiatric disorders, have not been investigated. In this study, our aims were to reevaluate the pathogenesis of 3q29-del by recreating model mice and analyzing their behavior and to identify novel new insights into the temporal activity and temperature fluctuations of the mouse model using a recently developed small implantable accelerometer chip, Nano-tag. We generated 3q29-del mice using genome editing technology and reevaluated common behavioral phenotypes. We next implanted Nano-tag in the abdominal cavity of mice for continuous measurements of long-time activity and body temperature. Our model mice exhibited weight loss similar to that of other mice reported previously. A general behavioral battery test in the model mice revealed phenotypes similar to those observed in mouse models of schizophrenia, including increased rearing frequency. Intraperitoneal implantation of Nano-tag, a miniature acceleration sensor, resulted in hypersensitive and rapid increases in the activity and body temperature of 3q29-del mice upon switching to lights-off condition. Similar to the 3q29-del mice reported previously, these mice are a promising model animals for schizophrenia. Successive quantitative analysis may provide results that could help in treating sleep disorders closely associated with neuropsychiatric disorders.


Subject(s)
Developmental Disabilities , Intellectual Disability , Humans , Child , Mice , Animals , Developmental Disabilities/genetics , Chromosome Deletion , DNA Copy Number Variations , Body Temperature , Intellectual Disability/genetics , Disease Models, Animal , Phenotype
4.
Front Neural Circuits ; 13: 74, 2019.
Article in English | MEDLINE | ID: mdl-31849617

ABSTRACT

Human brain imaging studies have revealed several regions that are activated in patients with chronic pain. In rodent brains, functional changes due to chronic pain have not been fully elucidated, as brain imaging techniques such as functional magnetic resonance imaging and positron emission tomography (PET) require the use of anesthesia to suppress movement. Consequently, conclusions derived from existing imaging studies in rodents may not accurately reflect brain activity under awake conditions. In this study, we used quantitative activation-induced manganese-enhanced magnetic resonance imaging to directly capture the previous brain activity of awake mice. We also observed and quantified the brain activity of the spared nerve injury (SNI) neuropathic pain model during awake conditions. SNI-operated mice exhibited a robust decrease of mechanical nociceptive threshold 14 days after nerve injury. Imaging on SNI-operated mice revealed increased neural activity in the limbic system and secondary somatosensory, sensory-motor, piriform, and insular cortex. We present the first study demonstrating a direct measurement of awake neural activity in a neuropathic pain mouse model.


Subject(s)
Brain/diagnostic imaging , Chronic Pain/diagnostic imaging , Hyperalgesia/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuralgia/diagnostic imaging , Animals , Disease Models, Animal , Male , Manganese , Mice
5.
Biomed Opt Express ; 10(4): 1557-1566, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31086694

ABSTRACT

A chronic brain blood-flow imaging device was developed for cerebrovascular disease treatment. This device comprises a small complementary metal-oxide semiconductor image sensor and a chronic fiber-optic plate window on a mouse head. A long-term cerebral blood-flow imaging technique was established in a freely moving mouse. Brain surface images were visible for one month using the chronic FOP window. This device obtained brain surface images and blood-flow velocity. The blood-flow changes were measured in behavioral experiments using this device. The chronic brain blood-flow imaging device may contribute to determining the cause of cerebrovascular disease and the development of cerebrovascular disease treatment.

6.
Front Pharmacol ; 9: 1400, 2018.
Article in English | MEDLINE | ID: mdl-30555329

ABSTRACT

Ninjin'yoeito (NYT), a traditional Japanese Kampo medicine formula, is used as a remedy for conditions, and physical weakness. Cancer cachexia is seen in advanced cancer patients and is defined by an ongoing loss of skeletal-muscle mass that leads to progressive functional impairment. In the present study, we examined the hypothesis whether NYT improves the functional loss of skeletal muscle cancer cachexia. Male C57/BL 6J mice with B16BF6 melanoma tumor showed decreased expression of myosin heavy chain (MHC) in the gastrocnemius muscle. Moreover, the expression of SOCS3 and phosphorylated STAT3 and AMPK was increased, and the expression of phosphorylated 4E-BP1 was decreased in the gastrocnemius muscle of tumor-bearing mice. These data suggested that amino acid metabolism was altered in tumor-bearing mice, which were normalized by the NYT intervention. The present study showed that NYT might be a novel therapeutic option for the treatment of sarcopenia occurring cancer cachexia.

SELECTION OF CITATIONS
SEARCH DETAIL