Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters











Publication year range
1.
Proc Natl Acad Sci U S A ; 109(13): 5016-21, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22411801

ABSTRACT

Titanium(IV) compounds are excellent anticancer drug candidates, but they have yet to find success in clinical applications. A major limitation in developing further compounds has been a general lack of understanding of the mechanism governing their bioactivity. To determine factors necessary for bioactivity, we tested the cytotoxicity of different ligand compounds in conjunction with speciation studies and mass spectrometry bioavailability measurements. These studies demonstrated that the Ti(IV) compound of N,N'-di(o-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) is cytotoxic to A549 lung cancer cells, unlike those of citrate and naphthalene-2,3-diolate. Although serum proteins are implicated in the activity of Ti(IV) compounds, we found that these interactions do not play a role in [TiO(HBED)](-) activity. Subsequent compound characterization revealed ligand properties necessary for activity. These findings establish the importance of the ligand in the bioactivity of Ti(IV) compounds, provides insights for developing next-generation Ti(IV) anticancer compounds, and reveal [TiO(HBED)](-) as a unique candidate anticancer compound.


Subject(s)
Blood Proteins/metabolism , Titanium/toxicity , Cell Death/drug effects , Cell Line, Tumor , Chelating Agents/chemistry , Chelating Agents/toxicity , Chromatography, Liquid , Crystallography, X-Ray , Dimethylformamide , Drug Screening Assays, Antitumor , Edetic Acid/analogs & derivatives , Edetic Acid/chemistry , Edetic Acid/toxicity , Humans , Hydrogen-Ion Concentration/drug effects , Mass Spectrometry , Potentiometry , Serum Albumin/metabolism , Spectrophotometry , Titanium/chemistry , Transferrin/metabolism
2.
J Am Chem Soc ; 134(3): 1482-5, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22257031

ABSTRACT

Rh(III)-catalyzed arylation of imines provides a new method for C-C bond formation while simultaneously introducing an α-branched amine as a functional group. This detailed mechanistic study provides insights for the rational future development of this new reaction. Relevant intermediate Rh(III) complexes have been isolated and characterized, and their reactivities in stoichiometric reactions with relevant substrates have been monitored. The reaction was found to be first order in the catalyst resting state and inverse first order in the C-H activation substrate.


Subject(s)
Amines/chemistry , Hydrocarbons, Aromatic/chemistry , Imines/chemistry , Rhodium/chemistry , Catalysis , Models, Molecular
3.
J Am Chem Soc ; 133(27): 10473-81, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21671679

ABSTRACT

Molecular water-oxidation catalysts can deactivate by side reactions or decompose to secondary materials over time due to the harsh, oxidizing conditions required to drive oxygen evolution. Distinguishing electrode surface-bound heterogeneous catalysts (such as iridium oxide) from homogeneous molecular catalysts is often difficult. Using an electrochemical quartz crystal nanobalance (EQCN), we report a method for probing electrodeposition of metal oxide materials from molecular precursors. Using the previously reported [Cp*Ir(H(2)O)(3)](2+) complex, we monitor deposition of a heterogeneous water oxidation catalyst by measuring the electrode mass in real time with piezoelectric gravimetry. Conversely, we do not observe deposition for homogeneous catalysts, such as the water-soluble complex Cp*Ir(pyr-CMe(2)O)X reported in this work. Rotating ring-disk electrode electrochemistry and Clark-type electrode studies show that this complex is a catalyst for water oxidation with oxygen produced as the product. For the heterogeneous, surface-attached material generated from [Cp*Ir(H(2)O)(3)](2+), we can estimate the percentage of electroactive metal centers in the surface layer. We monitor electrode composition dynamically during catalytic turnover, providing new information on catalytic performance. Together, these data suggest that EQCN can directly probe the homogeneity of molecular water-oxidation catalysts over short times.

4.
Org Biomol Chem ; 9(8): 2987-91, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21373659

ABSTRACT

A highly crystalline iodinating reagent, {[K·18-C-6]ICl(2)}(n), was synthesized in high yield (93%). The trihalide is supported by an 18-crown-6 macrocycle and forms a coordination polymer in the solid state. This reagent iodinates anilines and phenols efficiently under mild conditions. Controlled mono-iodination with anilines was easily achieved while poly-iodination was observed with phenols.

5.
J Am Chem Soc ; 133(10): 3280-3, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21329388

ABSTRACT

In general, the chemistry of both η(1)-allyl and η(3)-allyl Pd complexes is extremely well understood; η(1)-allyls are nucleophilic and react with electrophiles, whereas η(3)-allyls are electrophilic and react with nucleophiles. In contrast, relatively little is known about the chemistry of metal complexes with bridging allyl ligands. In this work, we describe a more efficient synthetic methodology for the preparation of Pd(I)-bridging allyl dimers and report the first studies of their stoichiometric reactivity. Furthermore, we show that these compounds can activate CO(2) and that an N-heterocyclic carbene-supported dimer is one of the most active and stable catalysts reported to date for the carboxylation of allylstannanes and allylboranes with CO(2).

6.
Inorg Chem ; 50(6): 2507-20, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21319784

ABSTRACT

Isostructural, "clamshell"-like, neutral dimeric pyrophosphato complexes of general formula {[M(bipy)](2)(µ-P(2)O(7))} [M = Pd(II) (1) or Pt(II) (2)] were synthesized and studied through single-crystal X-ray diffraction, IR, (31)P NMR spectroscopy, and MALDI-TOF mass spectrometry. Compound 1 was synthesized through the reaction of palladium(II) acetate, 2,2'-bipyridine (bipy), and sodium pyrophosphate (Na(4)P(2)O(7)) in water. Compound 2 was prepared through two different routes. The first involved the reaction of the Pt(IV) precursor Na(2)PtCl(6), bipy, and Na(4)P(2)O(7) in water, followed by reduction in DMF. The second involved the reaction of the Pt(II) precursor K(2)PtCl(4), bipy, and Na(4)P(2)O(7) in water. Both complexes crystallize in the monoclinic chiral space group Cc as hexahydrates, 1·6H(2)O (1a, yellow crystals) and 2·6H(2)O (2a, orange crystals), and exhibit a zigzag chain-like supramolecular packing arrangement with short and long intra/intermolecular metal-metal distances [3.0366(3)/4.5401(3) Å in 1a; 3.0522(3)/4.5609(3) Å in 2a]. A second crystalline phase of the Pt species was also isolated, with formula 2·3.5H(2)O (2b, deep green crystals), characterized by a dimer-of-dimers (pseudo-tetramer) structural submotif. Green crystals of 2b could be irreversibly converted to the orange form 2a by exposure to air or water, without retention of crystallinity, while a partial, reversible crystal-to-crystal transformation occurred when 2a was dried in vacuo. (31)P NMR spectra recorded for both 1 and 2 at various pHs revealed the occurrence of a fluxional protonated/deprotonated system in solution, which was interpreted as being composed, in the protonated form, of [HO=PO(3)](+) (P(α)) and O=PO(3) (P(ß)) pyrophosphate subunits. Compounds 1 and 2 exhibited two successive one-electron oxidations, mostly irreversible in nature; however, a dependence upon pH was observed for 1, with oxidation only occurring in strongly basic conditions. Density functional theory and atoms in molecules analyses showed that a d(8)-d(8) interaction was present in 1 and 2.


Subject(s)
2,2'-Dipyridyl/chemistry , Diphosphates/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Palladium/chemistry , Platinum/chemistry , Crystallography, X-Ray , Models, Molecular , Quantum Theory
7.
Chem Commun (Camb) ; 47(6): 1824-6, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21157595

ABSTRACT

The reactions of PCP supported Ni hydride, methyl and allyl species with CO(2) to generate Ni carboxylates are described. Computational studies suggest that all three reactions follow different pathways.

8.
J Am Chem Soc ; 132(45): 16017-29, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-20964386

ABSTRACT

Iridium half-sandwich complexes of the types Cp*Ir(N-C)X, [Cp*Ir(N-N)X]X, and [CpIr(N-N)X]X are catalyst precursors for the homogeneous oxidation of water to dioxygen. Kinetic studies with cerium(IV) ammonium nitrate as primary oxidant show that oxygen evolution is rapid and continues over many hours. In addition, [Cp*Ir(H(2)O)(3)]SO(4) and [(Cp*Ir)(2)(µ-OH)(3)]OH can show even higher turnover frequencies (up to 20 min(-1) at pH 0.89). Aqueous electrochemical studies on the cationic complexes having chelate ligands show catalytic oxidation at pH > 7; conversely, at low pH, there are no oxidation waves up to 1.5 V vs NHE for the complexes. H(2)(18)O isotope incorporation studies demonstrate that water is the source of oxygen atoms during cerium(IV)-driven catalysis. DFT calculations and kinetic experiments, including kinetic-isotope-effect studies, suggest a mechanism for homogeneous iridium-catalyzed water oxidation and contribute to the determination of the rate-determining step. The kinetic experiments also help distinguish the active homogeneous catalyst from heterogeneous nanoparticulate iridium dioxide.


Subject(s)
Iridium/chemistry , Water/chemistry , Catalysis , Crystallography, X-Ray , Ligands , Oxidation-Reduction
9.
J Org Chem ; 75(14): 4817-27, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20545329

ABSTRACT

Azobenzene undergoes reversible cis<-->trans photoisomerization upon irradiation. Substituents often change the isomerization behavior of azobenzene, but not always in a predictive manner. The synthesis and properties of three azobenzene derivatives, AzoAMP-1, -2, and -3, are reported. AzoAMP-1 (2,2'-bis[N-(2-pyridyl)methyl]diaminoazobenzene), which possesses two aminomethylpyridine groups ortho to the azo group, exhibits minimal trans-->cis photoisomerization and extremely rapid cis-->trans thermal recovery. AzoAMP-1 adopts a planar conformation in the solid state and is much more emissive (Phi(fl) = 0.003) than azobenzene when frozen in a matrix of 1:1 diethylether/ethanol at 77 K. Two strong intramolecular hydrogen bonds between anilino protons and pyridyl and azo nitrogen atoms are responsible for these unusual properties. Computational data predict AzoAMP-1 should not isomerize following S(2)<--S(0) excitation because of the presence of an energy barrier in the S(1) state. When potential energy curves are recalculated with methyl groups in place of anilino protons, the barrier to isomerization disappears. The dimethylated analogue AzoAMP-2 was independently synthesized, and the photoisomerization predicted by calculations was confirmed experimentally. AzoAMP-2, when irradiated at 460 nm, photoisomerizes with a quantum yield of 0.19 and has a much slower rate of thermal isomerization back to the trans form compared to that of AzoAMP-1. Its emission intensity at 77 K is comparable to that of azobenzene. Confirmation that the AzoAMP-1 and -2 retain excited state photochemistry analogous to azobenzene was provided by ultrafast transient absorption spectroscopy of both compounds in the visible spectral region. The isomerization of azobenzene occurs via a concerted inversion mechanism where both aryl rings must adopt a collinear arrangement prior to inversion. The hydrogen bonding in AzoAMP-1 prevents both aryl rings from adopting this conformation. To further probe the mechanism of isomerization, AzoAMP-3, which has only one anilinomethylpyridine substituent for hydrogen bonding, was prepared and characterized. AzoAMP-3 does not isomerize and exhibits emission (Phi(fl) = 0.0008) at 77 K. The hydrogen bonding motif in AzoAMP-1 and AzoAMP-3 provides the first example where inhibiting the concerted inversion pathway in an azobenzene prevents isomerization. These molecules provide important supporting evidence for the spectroscopic and computational studies aimed at elucidating the isomerization mechanism in azobenzene.

10.
J Phys Chem A ; 114(24): 6630-40, 2010 Jun 24.
Article in English | MEDLINE | ID: mdl-20507165

ABSTRACT

The ground electronic state (X(1)A(1)) of hexafluoroacetylacetone (HFAA) has been subjected to synergistic experimental and theoretical investigations designed to resolve controversies surrounding the nature of intramolecular hydrogen bonding for the enol tautomer. Cryogenic (93K) X-ray diffraction studies were conducted on single HFAA crystals grown in situ by means of the zone-melting technique, with the resulting electron density maps affording clear evidence for distinguishable O(1)-H and H...O(2) bonds that span an interoxygen distance of 2.680 +/- 0.003 A. Such laboratory findings have been corroborated by a variety of quantum chemical methods including Hartree-Fock (HF), density functional [DFT (B3LYP)], Møller-Plesset perturbation (MPn), and coupled cluster [CCSD, CCSD(T)] treatments built upon extensive sets of correlation-consistent basis functions. Geometry optimizations performed at the CCSD(T)/aug-cc-pVDZ level of theory predict an asymmetric (C(s)) equilibrium configuration characterized by an O...O donor-acceptor separation of 2.628 A. Similar analyses of the transition state for proton transfer reveal a symmetric (C(2v)) structure that presents a potential barrier of 21.29 kJ/mol (1779.7 cm(-1)) height. The emerging computational description of HFAA is in reasonable accord with crystallographic measurements and suggests a weakening of hydrogen-bond strength relative to that of the analogous acetylacetone molecule.

11.
Inorg Chem ; 49(3): 916-23, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20047293

ABSTRACT

The non-siderophoric Fe(3+) photocage FerriCast (4,5-dimethoxy-2-nitrophenyl)-[4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl] methanol (2) has been prepared in high yield using an optimized two-step reaction sequence that utilizes a trimethylsilyl trifluoromethanesulfonate (TMSOTf) assisted electrophilic aromatic substitution as the key synthetic step. Spectrophotometric assessment of Fe(3+) binding to FerriCast revealed a binding stoichiometry and metal ion affinity dependent on the nature of the counterion. Exposure of FerriCast to 350 nm light initiates a photoreaction that converts FerriCast into FerriUnc (4,5-dimethoxy-2-nitrosophenyl)-[4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl]-methanone), which binds Fe(3+) less strongly owing to resonance delocalization of the anilino lone pair into the benzophenone pi-system. The release of Fe(3+) upon photolysis of FerriCast also was evaluated using a previously reported turn-on fluorescent sensor that utilizes the same macrocyclic ligand (4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl, AT(2)12C4). In contrast to the original reports on AT(2)12C4-based Fe(3+) sensors, FerriCast does not interact with ferric iron in aqueous solution. Introduction of oxygen containing solvents (MeOH, H(2)O, DMSO, MES, and phosphate buffers) to CH(3)CN solutions of metalated FerriCast lead to rapid decomplexation as measured by UV-visible spectroscopy. Further investigations contradicted the published conclusions on the aqueous coordination chemistry of AT(2)12C4, but also confirmed the unique and unexpected selectivity of the macrocycle for Fe(3+) in nonaqueous solvents. The crystallographic analysis of [Cu(AT(2)12C4)Cl](+) provides a rare example of a bifurcated hydrogen bond, and evidence for redox chemistry with the ligand. Spectrophotometric analysis of the model ligand with redox active metal ions provide evidence for AT(2)12C4(*+), a quasi-stable species the presence of which suggests caution should be taken when evaluating the interaction of aniline-containing systems with redox active metal ions.

12.
Organometallics ; 29(23): 6369-6376, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-21218132

ABSTRACT

A family of palladium allyl complexes of the type bis(2-methylallyl)Pd(L) (L = PMe(3) (1), PEt(3) (2), PPh(3) (3) or NHC (4); NHC = 1,3-Bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene) have been prepared through the reaction of bis(2-methylallyl)Pd with the appropriate free ligand. Compounds 1-4 contain one η(1) and one η(3)-2-methylallyl ligand and 3 was characterized by X-ray crystallography. These complexes react rapidly with CO(2) at low temperature to form well defined unidentate palladium carboxylates of the type (η(3)-2-methylallyl)Pd(OC(O)C(4)H(7))(L) (L = PMe(3) (6), PEt(3) (7), PPh(3) (8) or NHC (9). The structure of 9 was elucidated using X-ray crystallography. The mechanism of the reaction of 1-4 with CO(2) was probed using a combination of experimental and theoretical (density functional theory) studies. The coordination mode of the allyl ligand is crucial and whereas nucleophilic η(1)-allyls react rapidly with CO(2), η(3)-allyls do not react. We propose that the reaction of η(1)-palladium allyls with CO(2) does not proceed via direct insertion of CO(2) into the Pd-C bond but through nucleophilic attack of the terminal olefin on electrophilic CO(2), followed by an associative substitution at palladium.

13.
Inorg Chem ; 48(22): 10769-79, 2009 Nov 16.
Article in English | MEDLINE | ID: mdl-19821559

ABSTRACT

The aqueous chemistry of Ti(IV) with biological ligands siderophores and tunichromes is modeled by using N,N'-dialkyl-2,3-dihydroxyterephthalamides (alTAMs), analogues of catecholamide-containing biomolecules, and 1-hydroxy-2(1H)-pyridinone (1,2-HOPO), an analogue of hydroxamate-containing biomolecules. Both types of ligands stabilize Ti(IV) with respect to hydrolytic precipitation, and afford tractable complexes. Complexes with the methyl derivative of alTAM, meTAM, are characterized by using mass spectrometry and UV/vis spectroscopy. Complexes with etTAM are characterized by the same techniques as well as X-ray crystallography, cyclic voltammetry, and spectropotentiomeric titration. The ESI mass spectra of these complexes in water show both 1:2 and 1:3 metal/ligand species. The X-ray crystal structure of a 1:2 complex, K(2)[Ti(etTAM)(2)(OCH(3))(2)].2CH(3)OH (1), is reported. The midpoint potential for reduction of 1 dissolved in solution is -0.98 V. A structure for a 1:3 Ti/etTAM species, Na(2)[Ti(etTAM)(3)] demonstrates the coordination and connectivity in that complex. Spectropotentiometric titrations in water reveal three metal-containing species in solution between pH 3 and 10. 1,2-HOPO supports Ti(IV) complexes that are stable and soluble in aqueous solution. The bis-HOPO complex [Ti(1,2-HOPO)(2)(OCH(3))(2)] (5) was characterized by X-ray crystallography and by mass spectrometry in solution, and the tris-HOPO dimer [(1,2-HOPO)(3)TiOTi(1,2-HOPO)(3)] (6) was characterized by X-ray crystallography. Taken together, these experiments explore the characteristics of complexes that may form between siderophores and tunichromes with Ti(IV) in biology and in the environment, and guide efforts toward new, well characterized aqueous Ti(IV) complexes. By revealing the identities and some characteristics of complexes that form under a variety of conditions, these studies further our understanding of the complicated nature of aqueous titanium coordination chemistry.


Subject(s)
Amides/chemistry , Organic Chemicals/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Pyridones/chemistry , Siderophores/chemistry , Titanium/chemistry , Crystallography, X-Ray , Electrochemistry , Ligands , Potentiometry , Spectrometry, Mass, Electrospray Ionization
14.
Inorg Chem ; 48(17): 8445-55, 2009 Sep 07.
Article in English | MEDLINE | ID: mdl-19634909

ABSTRACT

Caged complexes are metal ion chelators that release analytes when exposed to light of a specific wavelength. The synthesis and properties of ZinCleav-1, a cage for Zn(2+) that fragments upon photolysis, is reported. The general uncaging strategy involves integrating a nitrobenzyl group on the backbone of the ligand so that a carbon-heteroatom bond is cleaved by the photoreaction. The caged complex was obtained using a new synthetic strategy involving a Strecker synthesis to prepare a key aldehyde intermediate. ZinCleav-1 has a K(d) of 0.23 pM for Zn(2+) as measured by competitive titration with [Zn(PAR)(2)] (PAR = 4-(2-pyridyl-2-azo) resorcinol). The quantum yield for ZinCleav-1 is 2.4% and 0.55% for the apo and Zn(2+) complex, respectively. The ability of ZinCleav-1 to increase free [Zn(2+)] is calculated theoretically using the binding constants for the uncaged photoproducts, and demonstrated practically by using a fluorescent sensor to image the liberated Zn(2+). Free Zn(2+) may function as a neurotransmitter and have a role in the pathology of several neurological diseases. Studying these physiological functions remains challenging because Zn(2+) is silent to most common spectroscopic techniques. We expect ZinCleav-1 to be the first in a class of caged complexes that will facilitate biological investigations.


Subject(s)
Light , Nitrobenzenes/chemistry , Organometallic Compounds/chemistry , Zinc/chemistry , Molecular Structure , Organometallic Compounds/chemical synthesis , Photochemistry
15.
J Am Chem Soc ; 131(25): 8730-1, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19496565

ABSTRACT

A series of Cp*Ir catalysts are the most active known by over an order of magnitude for water oxidation with Ce(IV). DFT calculations support a Cp*Ir=O complex as an active species.


Subject(s)
Iridium/chemistry , Pyridines/chemistry , Water/chemistry , Catalysis , Crystallography, X-Ray , Ligands , Methane/analogs & derivatives , Methane/chemical synthesis , Methane/chemistry , Models, Molecular , Molecular Structure , Oxidation-Reduction , Pyridines/chemical synthesis , Thermodynamics
16.
Inorg Chem ; 48(2): 488-95, 2009 Jan 19.
Article in English | MEDLINE | ID: mdl-19093854

ABSTRACT

Selective epoxidation of alkenes is possible with a new manganese porphyrin catalyst, C(PMR), that uses hydrogen bonding between the carboxylic acid on the substrate molecule and a Kemp's triacid unit. For two out of three olefin substrates employed, molecular recognition prevents the unselective oxidation of C-H bonds, and directs oxidation to the olefin moiety, giving only epoxide products. Weak diastereoselectivity is observed in the epoxide products, suggesting that molecular recognition affects the orientation of the catalyst-bound substrate. The previously reported manganese terpyridine complex C(TMR) is shown to be a superior epoxidation catalyst to the porphyrin catalyst C(PMR). Good conversion of 2-cyclopentene acetic acid (substrate S2) with C(PMR) is consistent with molecular modeling, which indicates a particularly good substrate/catalyst match. Evidence suggests that hydrogen bonding between the substrate and the catalyst is critical in this system.


Subject(s)
Alkenes/chemistry , Epoxy Compounds/chemistry , Manganese/chemistry , Acetates/chemistry , Catalysis , Ibuprofen/chemistry , Stereoisomerism , Substrate Specificity
18.
Inorg Chem ; 47(18): 8380-90, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18710217

ABSTRACT

Serum albumin, the most abundant protein in human plasma (700 microM), binds diverse ligands at multiple sites. While studies have shown that serum albumin binds hard metals in chelate form, few have explored the trafficking of these metals by this protein. Recent work demonstrated that serum albumin may play a pivotal role in the transport and bioactivity of titanium(IV) complexes, including the anticancer drug candidate titanocene dichloride. The current work explores this interaction further by using a stable Ti(IV) complex that presents a hydrophobic surface to the protein. Ti(IV) chelation by 2,3-dihydroxynaphthalene (H2L1) and 2,3-dihydroxynaphthalene-6-sulfonate (H2L2) affords water soluble complexes that protect Ti(IV) from hydrolysis at pH 7.4 and bind to bovine serum albumin (BSA). The solution and solid Ti(IV) coordination chemistry were explored by aqueous spectropotentiometric titrations and X-ray crystallography, respectively, and with complementary electrochemistry, mass spectrometry, and IR and NMR spectroscopies. Four Ti(IV) species of L2, TiLH0, TiL2H0, TiL3H0, and TiL3H(-1), adequately represent the pH-dependent speciation. The isolation of Ti(C10H6O2)2 x 1.75 H2O at pH approximately 3 and K2[Ti(C10H6O2)3] x 3 H2O and Cs5[Ti(C10H5O5S)3] x 2.5 H2O at pH approximately 7 correlates well with the solution studies. At pH 7.4 and micromolar concentrations, the TiL3H0 species are favored. The Ti(naphthalene-2,3-diolate)3(2-) complex binds with moderate affinity to multiple sites of BSA. The primary site (K = 2.05 +/- 0.34 x 10(6) M(-1)) appears to be hydrophobic as indicated by competition studies with different ligands and a hydrophilic Ti(IV) complex. The Ti(naphthalene-2,3-diolate)3(2-) interaction with the Fe(III)-binding protein human serum transferrin (HsTf), a protein also important for Ti(IV) transport, and DNA was examined. The complex does not deliver Ti(IV) to HsTf and while it does bind to DNA, no cleavage promotion activity is observed. This investigation provides insight into the use of ligands to direct metal binding at different sites of albumin, which may facilitate transport to distinct targets.


Subject(s)
Naphthols/chemistry , Organometallic Compounds/chemistry , Serum Albumin/chemistry , Titanium/chemistry , Animals , Catalytic Domain , Cattle , Chelating Agents/chemistry , Crystallography, X-Ray , DNA/metabolism , Humans , Hydrogen-Ion Concentration , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Organometallic Compounds/chemical synthesis , Protein Binding , Serum Albumin/metabolism , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Spectrophotometry, Ultraviolet , Transferrin/metabolism , Water/chemistry
19.
J Am Chem Soc ; 130(30): 9971-83, 2008 Jul 30.
Article in English | MEDLINE | ID: mdl-18597458

ABSTRACT

Copper(I) imidate and amidate complexes of chelating N,N-donor ligands, which are proposed intermediates in copper-catalyzed amidations of aryl halides, have been synthesized and characterized by X-ray diffraction and detailed solution-phase methods. In some cases, the complexes adopt neutral, three-coordinate trigonal planar structures in the solid state, but in other cases they adopt an ionic form consisting of an L 2Cu (+) cation and a CuX 2 (-) anion. A tetraalkylammonium salt of the CuX 2 (-) anion in which X = phthalimidate was also isolated. Conductivity measurements and (1)H NMR spectra of mixtures of two complexes all indicate that the complexes exist predominantly in the ionic form in DMSO and DMF solutions. One complex was sufficiently soluble for conductance measurements in less polar solvents and was shown to adopt some degree of the ionic form in THF and predominantly the neutral form in benzene. The complexes containing dative nitrogen ligands reacted with iodoarenes and bromoarenes to form products from C-N coupling, but the ammonium salt of [Cu(phth) 2] (-) did not. Similar selectivities for stoichiometric and catalytic reactions with two different iodoarenes and faster rates for the stoichiometric reactions implied that the isolated amidate and imidate complexes are intermediates in the reactions of amides and imides with haloarenes catalyzed by copper complexes containing dative N,N ligands. These amidates and imidates reacted much more slowly with chloroarenes, including chloroarenes that possess more favorable reduction potentials than some bromoarenes and that are known to undergo fast dissociation of chloride from the chloroarene radical anion. The reaction of o-(allyloxy)iodobenzene with [(phen) 2Cu][Cu(pyrr) 2] results in formation of the C-N coupled product in high yield and no detectable amount of the 3-methyl-2,3-dihydrobenzofuran or 3-methylene-2,3-dihydrobenzofuran products that would be expected from a reaction that generated free radicals. These data and computed reaction barriers argue against mechanisms in which the haloarene reacts with a two-coordinate anionic copper species and mechanisms that start with electron transfer to generate a free iodoarene radical anion. Instead, these data are more consistent with mechanisms involving cleavage of the carbon-halogen bond within the coordination sphere of the metal.


Subject(s)
Amides/chemical synthesis , Imides/chemical synthesis , Nitrogen Compounds/chemistry , Amines/chemical synthesis , Azoles/chemical synthesis , Benzene Derivatives/chemistry , Copper/chemistry , Crystallography, X-Ray , Hydrocarbons, Halogenated/chemistry , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Organometallic Compounds/chemistry , Oxidation-Reduction , Phthalimides/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL