Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 49(5): 1693-705, 2006 Mar 09.
Article in English | MEDLINE | ID: mdl-16509585

ABSTRACT

Infections caused by hepatitis C virus (HCV) are a significant world health problem for which novel therapies are in urgent demand. The polymerase of HCV is responsible for the replication of viral RNA. We recently disclosed dihydroxypyrimidine carboxylates 2 as novel, reversible inhibitors of the HCV NS5B polymerase. This series was further developed into 5,6-dihydroxy-2-(2-thienyl)pyrimidine-4-carboxylic acids such as 34 (EC50 9.3 microM), which now show activity in the cell-based HCV replication assay. The structure-activity relationship of these inhibitors is discussed in the context of their physicochemical properties and of the polymerase crystal structure. We also report the results of mutagenesis experiments which support the proposed binding model, which involves pyrophosphate-like chelation of the active site Mg ions.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/drug effects , Hepacivirus/enzymology , Methylurea Compounds/chemical synthesis , Models, Molecular , Pyrimidines/chemical synthesis , Thiophenes/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Cell Line , Chelating Agents/chemistry , Crystallization , Humans , Methylurea Compounds/chemistry , Methylurea Compounds/pharmacology , Mutagenesis , Protein Conformation , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/pharmacology , Viral Nonstructural Proteins/chemistry , Virus Replication/drug effects
2.
J Virol ; 78(2): 938-46, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14694125

ABSTRACT

The RNA-dependent RNA polymerase of hepatitis C virus (HCV) is necessary for the replication of viral RNA and thus represents an attractive target for drug development. Several structural classes of nonnucleoside inhibitors (NNIs) of HCV RNA polymerase have been described, including a promising series of benzothiadiazine compounds that efficiently block replication of HCV subgenomic replicons in tissue culture. In this work we report the selection of replicons resistant to inhibition by the benzothiadiazine class of NNIs. Four different single mutations were identified in separate clones, and all four map to the RNA polymerase gene, validating the polymerase as the antiviral target of inhibition. The mutations (M414T, C451R, G558R, and H95R) render the HCV replicons resistant to inhibition by benzothiadiazines, though the mutant replicons remain sensitive to inhibition by other nucleoside and NNIs of the HCV RNA polymerase. Additionally, cross-resistance studies and synergistic inhibition of the enzyme by combinations of a benzimidazole and a benzothiadiazine indicate the existence of nonoverlapping binding sites for these two structural classes of inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , Benzothiadiazines/pharmacology , Hepacivirus/drug effects , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Virus Replication/drug effects , Binding Sites , Cell Line , Drug Synergism , Enzyme Inhibitors/pharmacology , Hepacivirus/enzymology , Hepacivirus/genetics , Hepacivirus/metabolism , Humans , Models, Molecular , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism
3.
J Virol ; 77(24): 13225-31, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14645579

ABSTRACT

The RNA-dependent RNA polymerase of hepatitis C virus (HCV) is the catalytic subunit of the viral RNA amplification machinery and is an appealing target for the development of new therapeutic agents against HCV infection. Nonnucleoside inhibitors based on a benzimidazole scaffold have been recently reported. Compounds of this class are efficient inhibitors of HCV RNA replication in cell culture, thus providing attractive candidates for further development. Here we report the detailed analysis of the mechanism of action of selected benzimidazole inhibitors. Kinetic data and binding experiments indicated that these compounds act as allosteric inhibitors that block the activity of the polymerase prior to the elongation step. Escape mutations that confer resistance to these compounds map to proline 495, a residue located on the surface of the polymerase thumb domain and away from the active site. Substitution of this residue is sufficient to make the HCV enzyme and replicons resistant to the inhibitors. Interestingly, proline 495 lies in a recently identified noncatalytic GTP-binding site, thus validating it as a potential allosteric site that can be targeted by small-molecule inhibitors of HCV polymerase.


Subject(s)
Allosteric Site/drug effects , Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , Hepacivirus/drug effects , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Cell Line , Enzyme Inhibitors/pharmacology , Hepacivirus/enzymology , Humans , Kinetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
4.
J Virol ; 76(8): 3688-96, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11907208

ABSTRACT

In order to find small RNA molecules that are specific and high-affinity ligands of nonstructural 5B (NS5B) polymerase, we screened by SELEX (systematic evolution of ligands by exponential amplification) a structurally constrained RNA library with an NS5BDeltaC55 enzyme carrying a C-terminal biotinylation sequence. Among the selected clones, two aptamers appeared to be high-affinity ligands of NS5B, with apparent dissociation constants in the low nanomolar range. They share a sequence that can assume a stem-loop structure. By mutation analysis, this structure has been shown to correspond to the RNA motif responsible for the tight interaction with NS5B. The aptamers appeared to be highly specific for the hepatitis C virus (HCV) polymerase since interaction with the GB virus B (GBV-B) NS5B protein cannot be observed. This is consistent with the observation that the activity of the HCV NS5B polymerase is efficiently inhibited by the selected aptamers, while neither GBV-B nor poliovirus 3D polymerases are affected. The mechanism of inhibition of the NS5B activity turned out to be noncompetitive with respect to template RNA, suggesting that aptamers and template RNA do not bind to the same site. As a matter of fact, mutations introduced in a basic exposed surface of the thumb domain severely impaired both the binding of and activity inhibition by the RNA aptamers.


Subject(s)
Hepacivirus/enzymology , RNA, Viral/chemistry , RNA-Dependent RNA Polymerase/metabolism , Base Sequence , Binding Sites , Gene Deletion , Hepacivirus/chemistry , Hepacivirus/genetics , Ligands , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL