Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 346: 123506, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38360385

ABSTRACT

This study addresses the pressing issue of high arsenic (As) contaminations, which poses a severe threat to various life forms in our ecosystem. Despite this prevailing concern, all organisms have developed some techniques to mitigate the toxic effects of As. Certain plants, such as bryophytes, the earliest land plants, exhibit remarkable tolerance to wide range of harsh environmental conditions, due to their inherent competence. In this study, bryophytes collected from West Bengal, India, across varying contamination levels were investigated for their As tolerance capabilities. Assessment of As accumulation potential and antioxidant defense efficiency, including SOD, CAT, APX, GPX etc. revealed Marchantia polymorpha as the most tolerant species. It exhibited highest As accumulation, antioxidative proficiency, and minimal damage. Transcriptomic analysis of M. polymorpha exposed to 40 µM As(III) for 24 and 48 h identified several early responsive differentially expressing genes (DEGs) associated with As tolerance. These includes GSTs, GRXs, Hsp20s, SULTR1;2, ABCC2 etc., indicating a mechanism involving vacuolar sequestration. Interestingly, one As(III) efflux-transporter ACR3, an extrusion pump, known to combat As toxicity was found to be differentially expressed compared to control. The SEM-EDX analysis, further elucidated the operation of As extrusion mechanism, which contributes added As resilience in M. polymorpha. Yeast complementation assay using Δacr3 yeast cells, showed increased tolerance towards As(III), compared to the mutant cells, indicating As tolerant phenotype. Overall, these findings significantly enhance our understanding of As tolerance mechanisms in bryophytes. This can pave the way for the development of genetically engineered plants with heightened As tolerance and the creation of improved plant varieties.


Subject(s)
Arsenic , Bryophyta , Marchantia , Resilience, Psychological , Arsenic/toxicity , Marchantia/genetics , Ecosystem , Saccharomyces cerevisiae
SELECTION OF CITATIONS
SEARCH DETAIL
...