ABSTRACT
Wnt signaling plays an essential role in cellular processes like development, maturation, and function maintenance. Xenopus laevis oocytes are a suitable model to study not only the development but also the function of different receptors expressed in their membranes, like those receptors expressed in the central nervous system (CNS) including Frizzled 7. Here, using frog oocytes and recordings of endogenous membrane currents in a two-electrode path configuration along with morphological observations, we evaluated the role of the non-canonical Wnt-5a ligand in oocytes. We found that acute application of Wnt-5a generated changes in endogenous calcium-dependent currents, entry oscillatory current, the membrane's outward current, and induced membrane depolarization. The incubation of oocytes with Wnt-5a caused a reduction of the membrane potential, potassium outward current, and protected the ATP current in the epithelium/theca removed (ETR) model. The oocytes exposed to Wnt-5a showed increased viability and an increase in the percentage of the germinal vesicle breakdown (GVBD), at a higher level than the control with progesterone. Altogether, our results suggest that Wnt-5a modulates different aspects of oocyte structure and generates calcium-dependent endogenous current alteration and GVDB process with a change in membrane potential at different concentrations and times of the exposition. These results help to understand the cellular effect of Wnt-5a and present the use of Xenopus oocytes to explore the mechanism that could impact the activation of Wnt signaling.
ABSTRACT
Alzheimer's disease (AD) constitutes a major public-health issue of our time. Regrettably, despite our considerable understanding of the pathophysiological aspects of this disease, current interventions lead to poor outcomes. Furthermore, experimentally promising compounds have continuously failed when translated to clinical trials. Along with increased population ageing, Type 2 Diabetes Mellitus (T2DM) has become an extremely common condition, mainly due to unbalanced dietary habits. Substantial epidemiological evidence correlates T2DM with cognitive impairment as well. Considering that brain insulin resistance, mitochondrial dysfunction, oxidative stress, and amyloidogenesis are common phenomena, further approaching the common features among these pathological conditions. Metformin constitutes the first-choice drug to preclude insulin resistance in T2DM clinical management. Experimental evidence suggests that its functions might include neuroprotective effects, in addition to its hypoglycemic activity. This review aims to summarize and discuss current knowledge of experimental data on metformin on this path towards translational medicine. Finally, we discuss the controversial data of responses to metformin in vitro, and in vivo, animal models and human studies.
Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Metformin , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Metformin/therapeutic use , Metformin/pharmacology , Humans , Animals , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Translational Research, Biomedical/methods , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Insulin Resistance/physiologyABSTRACT
Mitochondria are key organelles for the optimal function of the cell. Among their many functions, they maintain protein homeostasis through their own proteostatic machinery, which involves proteases and chaperones that regulate protein import and folding inside mitochondria. In the early 2000s, the mitochondrial unfolded protein response (UPRmt) was first described in mammalian cells. This stress response is activated by the accumulation of unfolded/misfolded proteins within the mitochondrial matrix, which results in the transmission of a signal to the nucleus to increase the expression of proteases and chaperones to address the abnormal mitochondrial protein load. After its discovery, this retrograde signaling pathway has also been described in other organisms of different complexities, suggesting that it is a conserved stress response. Although there are some specific differences among organisms, the mechanism of this stress response is mostly similar and involves the transmission of a signal from mitochondria to the nucleus that induces chromatin remodeling to allow the binding of specific transcription factors to the promoters of chaperones and proteases. In the last decade, proteins and signaling pathways that could be involved in the regulation of the UPRmt, including the Wnt signaling pathway, have been described. This minireview aims to summarize what is known about the mechanism of the UPRmt and its regulation, specifically in mammals and C. elegans.
ABSTRACT
Lithium therapy received approval during the 1970s, and it has been used for its antidepressant, antimanic, and anti-suicidal effects for acute and long-term prophylaxis and treatment of bipolar disorder (BPD). These properties have been well established; however, the molecular and cellular mechanisms remain controversial. In the past few years, many studies demonstrated that at the cellular level, lithium acts as a regulator of neurogenesis, aging, and Ca2+ homeostasis. At the molecular level, lithium modulates aging by inhibiting glycogen synthase kinase-3ß (GSK-3ß), and the phosphatidylinositol (PI) cycle; latter, lithium specifically inhibits inositol production, acting as a non-competitive inhibitor of inositol monophosphatase (IMPase). Mitochondria and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) have been related to lithium activity, and its regulation is mediated by GSK-3ß degradation and inhibition. Lithium also impacts Ca2+ homeostasis in the mitochondria modulating the function of the lithium-permeable mitochondrial Na+-Ca2+exchanger (NCLX), affecting Ca2+ efflux from the mitochondrial matrix to the endoplasmic reticulum (ER). A close relationship between the protease Omi, GSK-3ß, and PGC-1α has also been established. The purpose of this review is to summarize some of the intracellular mechanisms related to lithium activity and how, through them, neuronal aging could be controlled.
Subject(s)
Cellular Senescence , Lithium Compounds , Neurons , Neurons/drug effects , Lithium Compounds/pharmacology , Neuroprotective Agents/pharmacology , Enzymes/metabolism , Inositol/metabolism , Gene Expression Regulation/drug effects , Mitochondria/drug effects , Calcium/metabolism , Humans , Animals , Cellular Senescence/drug effectsABSTRACT
Cardiovascular diseases (CVD) and neurodegenerative disorders, such as Alzheimer's disease (AD), are highly prevalent conditions in middle-aged women that severely impair quality of life. Recent evidence suggests the existence of an intimate cross-talk between the heart and the brain, resulting from a complex network of neurohumoral circuits. From a pathophysiological perspective, the higher prevalence of AD in women may be explained, at least in part, by sex-related differences in the incidence/prevalence of CVD. Notably, the autonomic nervous system, the main heart-brain axis physiological orchestrator, has been suggested to play a role in the incidence of adverse cardiovascular events in middle-aged women because of decreases in oestrogen-related signalling during transition into menopause. Despite its overt relevance for public health, this hypothesis has not been thoroughly tested. Accordingly, in this review, we aim to provide up to date evidence supporting how changes in circulating oestrogen levels during transition to menopause may trigger autonomic dysfunction, thus promoting cardiovascular and cognitive decline in women. A main focus on the effects of oestrogen-mediated signalling at CNS structures related to autonomic regulation is provided, particularly on the role of oestrogens in sympathoexcitation. Improving the understanding of the contribution of the autonomic nervous system on the development, maintenance and/or progression of both cardiovascular and cognitive dysfunction during the transition to menopause should help improve the clinical management of elderly women, with the outcome being an improved life quality during the natural ageing process.
Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Female , Humans , Middle Aged , Aging , Autonomic Nervous System , Cognition , Estrogens , Menopause/physiology , Quality of LifeABSTRACT
The endoplasmic reticulum is a subcellular organelle key in the control of synthesis, folding, and sorting of proteins. Under endoplasmic reticulum stress, an adaptative unfolded protein response is activated; however, if this activation is prolonged, cells can undergo cell death, in part due to oxidative stress and mitochondrial fragmentation. Here, we report that endoplasmic reticulum stress activates c-Abl tyrosine kinase, inducing its translocation to mitochondria. We found that endoplasmic reticulum stress-activated c-Abl interacts with and phosphorylates the mitochondrial fusion protein MFN2, resulting in mitochondrial fragmentation and apoptosis. Moreover, the pharmacological or genetic inhibition of c-Abl prevents MFN2 phosphorylation, mitochondrial fragmentation, and apoptosis in cells under endoplasmic reticulum stress. Finally, in the amyotrophic lateral sclerosis mouse model, where endoplasmic reticulum and oxidative stress has been linked to neuronal cell death, we demonstrated that the administration of c-Abl inhibitor neurotinib delays the onset of symptoms. Our results uncovered a function of c-Abl in the crosstalk between endoplasmic reticulum stress and mitochondrial dynamics via MFN2 phosphorylation.
ABSTRACT
Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-ß (Aß) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aß increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aß proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.
ABSTRACT
Metabolic syndrome (MetS), a cluster of metabolic conditions that include obesity, hyperlipidemia, and insulin resistance, increases the risk of several aging-related brain diseases, including Alzheimer's disease (AD). However, the underlying mechanism explaining the link between MetS and brain function is poorly understood. Among the possible mediators are several adipose-derived secreted molecules called adipokines, including adiponectin (ApN) and resistin, which have been shown to regulate brain function by modulating several metabolic processes. To investigate the impact of adipokines on MetS, we employed a diet-induced model to induce the various complications associated with MetS. For this purpose, we administered a high-fat diet (HFD) to both WT and APP/PSN1 mice at a pre-symptomatic disease stage. Our data showed that MetS causes a fast decline in cognitive performance and stimulates Aß42 production in the brain. Interestingly, ApN treatment restored glucose metabolism and improved cognitive functions by 50% while decreasing the Aß42/40 ratio by approximately 65%. In contrast, resistin exacerbated Aß pathology, increased oxidative stress, and strongly reduced glucose metabolism. Together, our data demonstrate that ApN and resistin alterations could further contribute to AD pathology.
Subject(s)
Alzheimer Disease , Metabolic Syndrome , Animals , Mice , Adiponectin , Resistin , Alzheimer Disease/etiology , Adipokines , Obesity , GlucoseABSTRACT
In Octodon degus, the aging process is not equivalent between sexes and worsens for females. To determine the beginning of detrimental features in females and the ways in which to improve them, we compared adult females (36 months old) and aged females (72 months old) treated with Andrographolide (ANDRO), the primary ingredient in Andrographis paniculata. Our behavioral data demonstrated that age does not affect recognition memory and preference for novel experiences, but ANDRO increases these at both ages. Sociability was also not affected by age; however, social recognition and long-term memory were lower in the aged females than adults but were restored with ANDRO. The synaptic physiology data from brain slices showed that adults have more basal synaptic efficiency than aged degus; however, ANDRO reduced basal activity in adults, while it increased long-term potentiation (LTP). Instead, ANDRO increased the basal synaptic activity and LTP in aged females. Age-dependent changes were also observed in synaptic proteins, where aged females have higher synaptotagmin (SYT) and lower postsynaptic density protein-95 (PSD95) levels than adults. ANDRO increased the N-methyl D-aspartate receptor subtype 2B (NR2B) at both ages and the PSD95 and Homer1 only in the aged. Thus, females exposed to long-term ANDRO administration show improved complex behaviors related to age-detrimental effects, modulating mechanisms of synaptic transmission, and proteins.
Subject(s)
Diterpenes , Octodon , Animals , Female , Octodon/metabolism , Brain/metabolism , Diterpenes/pharmacology , Diterpenes/metabolism , Recognition, PsychologyABSTRACT
Alzheimer's disease (AD), the most common form of dementia, is characterized by the accumulation of amyloid ß (Aß) and hyperphosphorylated tau protein aggregates. Importantly, Aß and tau species are able to activate astrocytes and microglia, which release several proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß), together with reactive oxygen (ROS) and nitrogen species (RNS), triggering neuroinflammation. However, this inflammatory response has a dual function: it can play a protective role by increasing Aß degradation and clearance, but it can also contribute to Aß and tau overproduction and induce neurodegeneration and synaptic loss. Due to the significant role of inflammation in the pathogenesis of AD, several inflammatory mediators have been proposed as AD markers, such as TNF-α, IL-1ß, Iba-1, GFAP, NF-κB, TLR2, and MHCII. Importantly, the use of anti-inflammatory drugs such as NSAIDs has emerged as a potential treatment against AD. Moreover, diseases related to systemic or local inflammation, including infections, cerebrovascular accidents, and obesity, have been proposed as risk factors for the development of AD. In the following review, we focus on key inflammatory processes associated with AD pathogenesis.
Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Tumor Necrosis Factor-alpha/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , MicrogliaABSTRACT
Late onset Alzheimer´s disease (AD) is a neurodegenerative disease with gender differences in its onset and progression, being the prevalence predominant in women and at an earlier age than in men. The pathophysiology of the menopausal condition has been associated to this dementia, playing major roles regarding both endocrine and glucose metabolism changes, amongst other mechanisms. In the current review we address the role of estrogen deficiency in the processes involved in the development of AD, including amyloid precursor protein (APP) processing to form senile plaques, Tau phosphorylation forming neurofibrillary tangles, Wnt signaling and AD neuropathology, the role of glucose brain metabolism, Wnt signaling and glucose transport in the brain, and our research contribution to these topics.
Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Male , Female , Humans , Alzheimer Disease/metabolism , tau Proteins , Neurodegenerative Diseases/metabolism , Wnt Signaling Pathway , Menopause , GlucoseABSTRACT
Synapse unsilencing is an essential mechanism for experience-dependent plasticity. Here, we showed that the application of the ligand Wnt-5a converts glutamatergic silent synapses into functional ones by increasing both α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) currents (IAMPA and INMDA, respectively). These effects were mimicked by the hexapeptide Foxy-5 and inhibited by secreted frizzled-related protein sFRP-2. INMDA potentiation was produced by increased synaptic potency, followed by an increase in the probability of release (Pr), even in the presence of 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX). At a longer time of Wnt-5a exposure, the Pr increments were higher in INMDA than in IAMPA. In the presence of NMDAR inhibitors, Wnt-5a-induced conversion was fully inhibited in 69.0% of silent synapses, whereas in the remaining synapses were converted into functional one. Our study findings showed that the Wnt-5a-activated pathway triggers AMPAR insertion into mammalian glutamatergic synapses, unsilencing non-functional synapses and promoting the formation of nascent synapses during the early postnatal development of the brain circuits.
ABSTRACT
Impaired cerebral glucose metabolism is an early event that contributes to the pathogenesis of Alzheimer's disease (AD). Importantly, restoring glucose availability by pharmacological agents or genetic manipulation has been shown to protect against Aß toxicity, ameliorate AD pathology, and increase lifespan. Lithium, a therapeutic agent widely used as a treatment for mood disorders, has been shown to attenuate AD pathology and promote glucose metabolism in skeletal muscle. However, despite its widespread use in neuropsychiatric disorders, lithium's effects on the brain have been poorly characterized. Here we evaluated the effect of lithium on glucose metabolism in hippocampal neurons from wild-type (WT) and APPSwe/PS1ΔE9 (APP/PS1) mice. Our results showed that lithium significantly stimulates glucose uptake and replenishes ATP levels by preferential oxidation of glucose through glycolysis in neurons from WT mice. This increase was also accompanied by a strong increase in glucose transporter 3 (Glut3), the major carrier responsible for glucose uptake in neurons. Similarly, using hippocampal slices from APP-PS1 mice, we demonstrate that lithium increases glucose uptake, glycolytic rate, and the ATP:ADP ratio in a process that also involves the activation of AMPK. Together, our findings indicate that lithium stimulates glucose metabolism and can act as a potential therapeutic agent in AD.
Subject(s)
Alzheimer Disease , Adenosine Triphosphate/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Glucose/metabolism , Hippocampus/metabolism , Lithium/pharmacology , Lithium/therapeutic use , Mice , Mice, Transgenic , Presenilin-1/geneticsABSTRACT
BACKGROUND: Alzheimer's disease (AD) is characterized by a high etiological and clinical heterogeneity, which has obscured the diagnostic and treatment efficacy, as well as limited the development of potential drugs. Sex differences are among the risk factors that contribute to the variability of disease manifestation. Unlike men, women are at greater risk of developing AD and suffer from higher cognitive deterioration, together with important changes in pathological features. Alterations in glucose metabolism are emerging as a key player in the pathogenesis of AD, which appear even decades before the presence of clinical symptoms. OBJECTIVE: We aimed to study whether AD-related sex differences influence glucose metabolism. METHODS: We used male and female APPswe/PS1dE9 (APP/PS1) transgenic mice of different ages to examine glucose metabolism effects on AD development. RESULTS: Our analysis suggests an age-dependent decline of metabolic responses, cognitive functions, and brain energy homeostasis, together with an increase of Aß levels in both males and females APP/PS1 mice. The administration of Andrographolide (Andro), an anti-inflammatory and anti-diabetic compound, was able to restore several metabolic disturbances, including the glycolytic and the pentose phosphate pathway fluxes, ATP levels, AMPKα activity, and Glut3 expression in 8-month-old mice, independent of the sex, while rescuing these abnormalities only in older females. Similarly, Andro also prevented Aß accumulation and cognitive decline in all but old males. CONCLUSION: Our study provides insight into the heterogeneity of the disease and supports the use of Andro as a potential drug to promote personalized medicine in AD.
Subject(s)
Alzheimer Disease , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Female , Glucose/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/geneticsABSTRACT
Octodon degus are a diurnal long-lived social animal widely used to perform longitudinal studies and complex cognitive tasks to test for physiological conditions with similitude in human behavior. They show a complex social organization feasible to be studied under different conditions and ages. Several aspects in degus physiology demonstrated that these animals are susceptible to environmental conditions, such as stress, fear, feeding quality, and isolation. However, the relevance of these factors in life of this animal depends on sex and age. Despite its significance, there are few studies with the intent to characterize neurological parameters that include these two parameters. To determine the basal neurophysiological status, we analyzed basic electrophysiological parameters generated during basal activity or synaptic plasticity in the brain slices of young and aged female and male degus. We studied the hippocampal circuit of animals kept in social ambient in captivity under controlled conditions. The study of basal synaptic activity in young animals (12-24 months old) was similar between sexes, but female degus showed more efficient synaptic transmission than male degus. We found the opposite in aged animals (60-84 months old), where male degus had a more efficient basal transmission and facilitation index than female degus. Furthermore, female and male degus develop significant but not different long-term synaptic plasticity (LTP). However, aged female degus need to recruit twice as many axons to evoke the same postsynaptic activity as male degus and four times more when compared to young female degus. These data suggest that, unlike male degus, the neural status of aged female degus change, showing less number or functional axons available at advanced ages. Our data represent the first approach to incorporate the effect of sex along with age progression in basal neural status.
ABSTRACT
A significant percentage of COVID-19 survivors develop long-lasting cardiovascular sequelae linked to autonomic nervous system dysfunction, including fatigue, arrhythmias, and hypertension. This post-COVID-19 cardiovascular syndrome is one facet of "long-COVID," generally defined as long-term health problems persisting/appearing after the typical recovery period of COVID-19. Despite the fact that this syndrome is not fully understood, it is urgent to develop strategies for diagnosing/managing long-COVID due to the immense potential for future disease burden. New diagnostic/therapeutic tools should provide health personnel with the ability to manage the consequences of long-COVID and preserve/improve patient quality of life. It has been shown that cardiovascular rehabilitation programs (CRPs) stimulate the parasympathetic nervous system, improve cardiorespiratory fitness (CRF), and reduce cardiovascular risk factors, hospitalization rates, and cognitive impairment in patients suffering from cardiovascular diseases. Given their efficacy in improving patient outcomes, CRPs may have salutary potential for the treatment of cardiovascular sequelae of long-COVID. Indeed, there are several public and private initiatives testing the potential of CRPs in treating fatigue and dysautonomia in long-COVID subjects. The application of these established rehabilitation techniques to COVID-19 cardiovascular syndrome represents a promising approach to improving functional capacity and quality of life. In this brief review, we will focus on the long-lasting cardiovascular and autonomic sequelae occurring after COVID-19 infection, as well as exploring the potential of classic and novel CRPs for managing COVID-19 cardiovascular syndrome. Finally, we expect this review will encourage health care professionals and private/public health organizations to evaluate/implement non-invasive techniques for the management of COVID-19 cardiovascular sequalae.
ABSTRACT
Synaptic transmission is a dynamic process that requires precise regulation. Early in life, we must be able to forge appropriate connections (add and remove) to control our behavior. Neurons must recognize appropriate targets, and external soluble factors that activate specific signaling cascades provide the regulation needed to achieve this goal. Wnt signaling has been implicated in several forms of synaptic plasticity, including functional and structural changes associated with brain development. The analysis of synapses from an electrophysiological perspective allows us to characterize the functional role of cellular signaling pathways involved in brain development. The application of quantal theory to principles of developmental plasticity offers the possibility of dissecting the function of structural changes associated with the birth of new synapses as well as the maturation of immature silent synapses. Here, we focus on electrophysiological and molecular evidence that the Wnt signaling pathway regulates glutamatergic synaptic transmission, specifically N-methyl-d-aspartate receptors (NMDARs), to control the birth of new synapses. We also focus on the role of Wnts in the conversion of silent synapses into functional synapses.