Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 53(6): 779-786, 2021 06.
Article in English | MEDLINE | ID: mdl-33972781

ABSTRACT

Long-read sequencing (LRS) promises to improve the characterization of structural variants (SVs). We generated LRS data from 3,622 Icelanders and identified a median of 22,636 SVs per individual (a median of 13,353 insertions and 9,474 deletions). We discovered a set of 133,886 reliably genotyped SV alleles and imputed them into 166,281 individuals to explore their effects on diseases and other traits. We discovered an association of a rare deletion in PCSK9 with lower low-density lipoprotein (LDL) cholesterol levels, compared to the population average. We also discovered an association of a multiallelic SV in ACAN with height; we found 11 alleles that differed in the number of a 57-bp-motif repeat and observed a linear relationship between the number of repeats carried and height. These results show that SVs can be accurately characterized at the population scale using LRS data in a genome-wide non-targeted approach and demonstrate how SVs impact phenotypes.


Subject(s)
Disease/genetics , Genomic Structural Variation , High-Throughput Nucleotide Sequencing , Quantitative Trait, Heritable , Alleles , Cholesterol, LDL/metabolism , Chromosomes, Human/genetics , Female , Gene Frequency/genetics , Humans , Iceland , Linear Models , Male , Proprotein Convertase 9/genetics , Recombination, Genetic/genetics , Sequence Deletion/genetics
2.
Genome Biol ; 22(1): 28, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33419473

ABSTRACT

A major challenge to long read sequencing data is their high error rate of up to 15%. We present Ratatosk, a method to correct long reads with short read data. We demonstrate on 5 human genome trios that Ratatosk reduces the error rate of long reads 6-fold on average with a median error rate as low as 0.22 %. SNP calls in Ratatosk corrected reads are nearly 99 % accurate and indel calls accuracy is increased by up to 37 %. An assembly of Ratatosk corrected reads from an Ashkenazi individual yields a contig N50 of 45 Mbp and less misassemblies than a PacBio HiFi reads assembly.


Subject(s)
Chimera , Genome, Human , Female , Genomics , Humans , Male , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
3.
Nat Genet ; 50(11): 1542-1552, 2018 11.
Article in English | MEDLINE | ID: mdl-30349119

ABSTRACT

Imprinting is the preferential expression of one parental allele over the other. It is controlled primarily through differential methylation of cytosine at CpG dinucleotides. Here we combine 285 methylomes and 11,617 transcriptomes from peripheral blood samples with parent-of-origin phased haplotypes, to produce a new map of imprinted methylation and gene expression patterns across the human genome. We demonstrate how imprinted methylation is a continuous rather than a binary characteristic. We describe at high resolution the parent-of-origin methylation pattern at the 15q11.2 Prader-Willi/Angelman syndrome locus, with nearly confluent stochastic paternal methylation punctuated by 'spikes' of maternal methylation. We find examples of polymorphic imprinted methylation unrelated (at VTRNA2-1 and PARD6G) or related (at CHRNE) to nearby SNP genotypes. We observe RNA isoform-specific imprinted expression patterns suggestive of a methylation-sensitive transcriptional elongation block. Finally, we gain new insights into parent-of-origin-specific effects on phenotypes at the DLK1/MEG3 and GNAS loci.


Subject(s)
DNA Methylation/genetics , Genome, Human , Genomic Imprinting/physiology , Inheritance Patterns/genetics , Parents , Transcriptome/genetics , Angelman Syndrome/genetics , Case-Control Studies , Chromosomes, Human, Pair 15 , Cohort Studies , CpG Islands/genetics , Female , Genetic Loci , Humans , Iceland , Male , Polymorphism, Single Nucleotide , Prader-Willi Syndrome/genetics , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...