Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Exp Brain Res ; 242(1): 59-66, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37955706

ABSTRACT

Tendon vibration is used extensively to assess the role of peripheral mechanoreceptors in motor control, specifically, the muscle spindles. Periodic tendon vibration is known to activate muscle spindles and induce a kinesthetic illusion that the vibrated muscle is longer than it actually is. Noisy tendon vibration has been used to assess the frequency characteristics of proprioceptive reflex pathways during standing; however, it is unknown if it induces the same kinesthetic illusions as periodic vibration. The purpose of the current study was to assess the effects of both periodic and noisy tendon vibration in a kinesthetic targeting task. Participants (N = 15) made wrist extension movements to a series of visual targets without vision of the limb, while their wrist flexors were either vibrated with periodic vibration (20, 40, 60, 80, and 100 Hz), or with noisy vibration which consisted of filtered white noise with power between ~ 20 and 100 Hz. Overall, our results indicate that both periodic and noisy vibration can induce robust targeting errors during a wrist targeting task. Specifically, the vibration resulted in an undershooting error when moving to the target. The findings from this study have important implications for the use of noisy tendon vibration to assess proprioceptive reflex pathways and should be considered when designing future studies using noisy vibration.


Subject(s)
Illusions , Vibration , Humans , Tendons/physiology , Kinesthesis/physiology , Proprioception/physiology , Muscle Spindles/physiology , Movement/physiology , Illusions/physiology , Muscle, Skeletal/physiology
2.
Front Neurosci ; 17: 1191976, 2023.
Article in English | MEDLINE | ID: mdl-37621714

ABSTRACT

Height-induced postural threat affects emotional state and standing balance behaviour during static, voluntary, and dynamic tasks. Facing a threat to balance also affects sensory and cortical processes during balance tasks. As sensory and cognitive functions are crucial in forming perceptions of movement, balance-related changes during threatening conditions might be associated with changes in conscious perceptions. Therefore, the purpose of this study was to examine the changes and potential mechanisms underlying conscious perceptions of balance-relevant information during height-induced postural threat. A combination of three experimental procedures utilized height-induced postural threat to manipulate emotional state, balance behavior, and/or conscious perceptions of balance-related stimuli. Experiment 1 assessed conscious perception of foot position during stance. During continuous antero-posterior pseudorandom support surface rotations, perceived foot movement was larger while actual foot movement did not change in the High (3.2 m, at the edge) compared to Low (1.1 m, away from edge) height conditions. Experiment 2 and 3 assessed somatosensory perceptual thresholds during upright stance. Perceptual thresholds for ankle rotations were elevated while foot sole vibrations thresholds remained unchanged in the High compared to Low condition. This study furthers our understanding of the relationship between emotional state, sensory perception, and balance performance. While threat can influence the perceived amplitude of above threshold ankle rotations, there is a reduction in the sensitivity of an ankle rotation without any change to foot sole sensitivity. These results highlight the effect of postural threat on neurophysiological and cognitive components of balance control and provide insight into balance assessment and intervention.

3.
J Neurophysiol ; 130(3): 585-595, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37492897

ABSTRACT

It has been proposed that sensory force/pressure cues are integrated within a positive feedback mechanism, which accounts for the slow dynamics of human standing behavior and helps align the body with gravity. However, experimental evidence of this mechanism remains scarce. This study tested predictions of a positive torque feedback mechanism for standing balance, specifically that differences between a "reference" torque and actual torque are self-amplified, causing the system to generate additional torque. Seventeen healthy young adults were positioned in an apparatus that permitted normal sway at the ankle until a brake on the apparatus was applied, discreetly "locking" body movement during stance. Once locked, a platform positioned under the apparatus remained in place (0 mm) or slowly translated backward (3 mm or 6 mm), tilting subjects forward. Postural behavior was characterized by two distinct responses: the center of pressure (COP) offset (i.e., change in COP elicited by the surface translation) and the COP drift (i.e., change in COP during the sustained tilt). Model simulations were performed using a linear balance control model containing torque feedback to provide a conceptual basis for the interpretation of experimental results. Holding the body in sustained tilt positions resulted in COP drifting behavior, reflecting attempts of the balance control system to restore an upright position through increases in plantar flexor torque. In line with predictions of positive torque feedback, larger COP offsets led to faster increases in COP over time. These findings provide experimental support for a positive torque feedback mechanism involved in the control of standing balance.NEW & NOTEWORTHY Using model simulations and a novel experimental approach, we tested behavioral predictions of a sensory torque feedback mechanism involved in the control of upright standing. Torque feedback is thought to reduce the effort required to stand and play a functional role in slowly aligning the body with gravity. Our results provide experimental evidence of a torque feedback mechanism and offer new and valuable insights into the sensorimotor control of human balance.


Subject(s)
Ankle , Postural Balance , Young Adult , Humans , Feedback , Torque , Movement , Feedback, Sensory
4.
J Physiol ; 601(12): 2473-2492, 2023 06.
Article in English | MEDLINE | ID: mdl-37060169

ABSTRACT

During unperturbed bipedal standing, postural control is governed primarily by subcortical and spinal networks. However, it is unclear if cortical networks begin to play a greater role when stability is threatened. This study investigated how initial and repeated exposure to a height-related postural threat modulates cortical potentials time-locked to discrete centre of pressure (COP) events during standing. Twenty-seven young adults completed a series of 90-s standing trials at LOW (0.8 m above the ground, away from edge) and HIGH (3.2 m above the ground, at edge) threat conditions. Three LOW trials were completed before and after 15 consecutive HIGH trials. Participants stood on a force plate while electroencephalographic (EEG) activity was recorded. To examine changes in cortical activity in response to discrete postural events, prominent forward and backward peaks in the anterior-posterior COP time series were identified. EEG data were waveform-averaged to these events and the amplitude of event-related cortical activity was calculated. At the LOW condition, event-related potentials (ERPs) were scarcely detectable. However, once individuals stood at the HIGH condition, clear ERPs were observed, with more prominent potentials being observed for forward (edge-directed), compared to backward, COP events. Since forward COP peaks accelerate the centre of mass away from the platform edge, these results suggest there is intermittent recruitment of cortical networks that may be involved in the detection and minimization of postural sway toward a perceived threat. This altered cortical engagement appears resistant to habituation and may contribute to threat-related balance changes that persist following repeated threat exposure. KEY POINTS: While standing balance control is regulated primarily by subcortical and spinal processes, it is unclear if cortical networks play a greater role when stability is threatened. This study examined how cortical potentials time-locked to prominent peaks in the anterior-posterior centre of pressure (COP) time series were modulated by exposure to a height-related postural threat. While cortical potentials recorded over the primary sensorimotor cortices were scarcely detectable under non-threatening conditions, clear cortical potentials were observed when individuals stood under conditions of height-related threat. Cortical potentials were larger in response to COP peaks directed toward, compared to away from, the platform edge, and showed limited habituation with repeated threat exposure. Since forward COP peaks accelerate the centre of mass away from the platform edge, these findings suggest that when balance is threatened, there is intermittent recruitment of cortical networks, which may minimize the likelihood of falling in the direction of a perceived threat.


Subject(s)
Fear , Standing Position , Young Adult , Humans , Fear/physiology , Postural Balance/physiology , Time Factors
5.
J Appl Physiol (1985) ; 132(4): 1005-1019, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35271409

ABSTRACT

We investigated the impairment of position sense associated with muscle fatigue. In Experiment 1, participants performed learned eccentric extension (22°/s) movements of the elbow as the arm was pulled through the horizontal plane without vision of the arm. They opened their closed right hand when they judged it to be passing through a target. Dynamic position sense was assessed via accuracy of limb position to the target at the time of hand opening. Eccentric movements were performed against a flexion load [10% of flexion maximum voluntary contractions (MVCs)]. We investigated performance under conditions with and without biceps vibration, as well as before and after eccentric exercise. In Experiment 2, a motor was used to extend the participant's limb passively. We compared conditions with and without vibration of the lengthening but passive biceps, before and after exercise. In Experiment 1, vibration of the active biceps resulted in participants opening their hands earlier [mean, [Formula: see text] (95% confidence interval, CI) -5.52° (-7.40, -3.63)] compared with without vibration. Exercise reduced flexion MVCs by ∼44%, and participants undershot the target more [-5.51° (-9.31, -1.70)] in the post-exercise block during control trials. Exercise did not influence the persistence of the vibratory illusion. In Experiment 2, vibration resulted in greater undershooting [-2.99° (-3.99, -1.98)] compared with without vibration, before and after exercise. Although exercise reduced MVCs by ∼50%, the passive task showed no effects of exercise. We suggest that the central nervous system continues to rely on muscle spindles for limb position sense, even when they reside in a muscle exposed to fatiguing eccentric contractions.NEW & NOTEWORTHY Dynamic position errors were examined in an eccentric and a passive elbow extension proprioceptive-targeting task, before and after eccentric exercise, with and without muscle vibration. Participants actively undershot the target more when fatigued while fatigue did not exacerbate task accuracy during passive movement. Vibration caused undershoots regardless of fatigue state during active and passive movements. We propose that the central nervous system continues to rely on muscle spindles for kinesthesia, even when they reside in a fatigued muscle.


Subject(s)
Goals , Proprioception , Arm , Humans , Movement/physiology , Muscle, Skeletal/physiology , Proprioception/physiology , Vibration
6.
Neuroscience ; 487: 8-25, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35085706

ABSTRACT

Threats to stability elicit context-specific changes in balance control; however, the underlying neural mechanisms are not fully understood. Previous work has speculated that a shift toward greater supraspinal control may contribute to threat-related balance changes. This study investigated how neural correlates of cortical and subcortical control of balance were affected by initial and repeated exposure to a height-related postural threat. Corticomuscular coherence (CMC) between EEG recorded over the sensorimotor cortex and EMG recorded from the soleus (SOL) provided an estimate of cortical control, while intermuscular coherence (IMC) between bilateral SOL provided estimates of both cortical and subcortical control. These outcomes, along with measures of psychological and arousal state and standing balance control, were examined in 28 healthy young adults during a series of 90-s quiet standing trials completed at LOW (0.8 m above ground; away from edge) and HIGH (3.2 m above ground, at edge) threat conditions. Initial exposure to threat significantly increased gamma-band CMC (31-40 Hz) and IMC at frequencies thought to be mediated by cortical (21-40 Hz) and subcortical (5-20 Hz) substrates. Following repeated threat exposure, only estimates of cortical control (gamma CMC and 21-40 Hz IMC) demonstrated significant habituation. Estimates of cortical control changed in parallel with high-frequency centre of pressure power (>0.5 Hz) and plantar-dorsiflexor coactivation, but not other threat-related balance changes which did not habituate. These results support the hypothesis that postural threat induces a shift toward more supraspinal control of balance, and suggests this altered neural control may contribute to specific threat-related balance changes.


Subject(s)
Habituation, Psychophysiologic , Sensorimotor Cortex , Electromyography/methods , Humans , Muscle, Skeletal/physiology , Postural Balance/physiology , Standing Position , Young Adult
7.
Neurosci Lett ; 764: 136279, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34600040

ABSTRACT

Mechanical muscle tendon vibration activates multiple sensory receptors in the muscle and tendon. In particular, tendon vibration tends to activate the Ia afferents the strongest, but also will activate group II and Ib afferents. This activation can cause three main effects in the central nervous system: proprioceptive illusions, tonic vibration reflexes, and suppression of the stretch response. Noisy tendon vibration has been used to assess the frequency characteristics of proprioceptive reflexes and, interestingly there appeared to be no evidence for proprioceptive illusions or tonic vibration reflexes during standing [9]. However, it remains unknown if noisy vibration induces a suppression of the muscle stretch response. Therefore, the purpose of this study was to investigate the effects of noisy and periodic tendon vibration on the stretch response in the flexor carpi radialis muscle (FCR). We examined FCR stretch responses with and without periodic (20 and 100 Hz) and noisy (∼10-100 Hz) tendon vibration. We additionally had participants perform the task under the instruction set to either not respond to the perturbation or to respond as fast as possible. The key finding from this study was that both periodic and noisy vibration resulted in a reduced stretch response amplitude. Additionally, it was found that a participant's intent to respond did not modulate the amount of suppression observed. The findings from this study provide a more detailed understanding of the effects of tendon vibration on the muscle stretch response.


Subject(s)
Muscle, Skeletal/physiology , Proprioception , Reflex, Stretch/physiology , Tendons/physiology , Vibration/adverse effects , Wrist/physiology , Adult , Electromyography , Female , Humans , Male , Young Adult
8.
Hum Mov Sci ; 80: 102857, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34481328

ABSTRACT

INTRODUCTION: The StartReact (SR) effect is the accelerated release of a prepared movement when a startling acoustic stimulus is presented at the time of the imperative stimulus (IS). SR paradigms have been used to study defective control of balance and gait in people with neurological conditions, but differences in emotional state (e.g. fear of failure) may be a potential confounder when comparing patients to healthy subjects. In this study, we aimed to gain insight in the effects of postural threat on the SR effect by manipulating surface height during a postural (lateral step) task and a non-postural (wrist extension) task. METHODS: Eleven healthy participants performed a lateral step perpendicular to the platform edge, and 19 participants performed a wrist extension task while standing at the platform edge. Participants initiated the movement as fast as possible in response to an IS that varied in intensity across trials (80 dB to 121 dB) at both low and high platform height (3.2 m). For the lateral step task, we determined anticipatory postural adjustments (APA) and step onset latencies. For the wrist extension task, muscle onset latencies were determined. We used Wilcoxon signed-rank tests on the relative onset latencies between both heights, to identify whether the effect of height was different for IS intensities between 103 and 118 dB compared to 121 dB. RESULTS: For both tasks, onset latencies were significantly shortened at 121 dB compared to 80 dB, regardless of height. In the lateral step task, the effect of height was larger at 112 dB compared to 121 dB. The absolute onset latencies showed that at 112 dB there was no such stimulus intensity effect at high as seen at low surface height. In the wrist extension task, no differential effects of height could be demonstrated across IS intensities. CONCLUSIONS: Postural threat had a significant, yet modest effect on shortening of RTs induced by a loud IS, with a mere 3 dB difference between standing on high versus low surface height. Interestingly, this effect of height was specific to the postural (i.e. lateral stepping) task, as no such differences could be demonstrated in the wrist extension task. This presumably reflects more cautious execution of the lateral step task when standing on height. The present findings suggest that applying stimuli of sufficiently high intensity (≥115 dB) appears to neutralize potential differences in emotional state when studying SR effects.


Subject(s)
Postural Balance , Wrist , Gait , Humans , Movement , Reaction Time
9.
Elife ; 102021 08 10.
Article in English | MEDLINE | ID: mdl-34374648

ABSTRACT

Human standing balance relies on self-motion estimates that are used by the nervous system to detect unexpected movements and enable corrective responses and adaptations in control. These estimates must accommodate for inherent delays in sensory and motor pathways. Here, we used a robotic system to simulate human standing about the ankles in the anteroposterior direction and impose sensorimotor delays into the control of balance. Imposed delays destabilized standing, but through training, participants adapted and re-learned to balance with the delays. Before training, imposed delays attenuated vestibular contributions to balance and triggered perceptions of unexpected standing motion, suggesting increased uncertainty in the internal self-motion estimates. After training, vestibular contributions partially returned to baseline levels and larger delays were needed to evoke perceptions of unexpected standing motion. Through learning, the nervous system accommodates balance sensorimotor delays by causally linking whole-body sensory feedback (initially interpreted as imposed motion) to self-generated balance motor commands.


When standing, neurons in the brain send signals to skeletal muscles so we can adjust our movements to stay upright based on the requirements from the surrounding environment. The long nerves needed to connect our brain, muscles and sensors lead to considerable time delays (up to 160 milliseconds) between sensing the environment and the generation of balance-correcting motor signals. Such delays must be accounted for by the brain so it can adjust how it regulates balance and compensates for unexpected movements. Aging and neurological disorders can lead to lengthened neural delays, which may result in poorer balance. Computer modeling suggests that we cannot maintain upright balance if delays are longer than 300-340 milliseconds. Directly assessing the destabilizing effects of increased delays in human volunteers can reveal how capable the brain is at adapting to this neurological change. Using a custom-designed robotic balance simulator, Rasman et al. tested whether healthy volunteers could learn to balance with delays longer than the predicted 300-340 millisecond limit. In a series of experiments, 46 healthy participants stood on the balance simulator which recreates the physical sensations and neural signals for balancing upright based on a computer-driven virtual reality. This unique device enabled Rasman et al. to artificially impose delays by increasing the time between the generation of motor signals and resulting whole-body motion. The experiments showed that lengthening the delay between motor signals and whole-body motion destabilized upright standing, decreased sensory contributions to balance and led to perceptions of unexpected movements. Over five days of training on the robotic balance simulator, participants regained their ability to balance, which was accompanied by recovered sensory contributions and perceptions of expected standing, despite the imposed delays. When a subset of participants was tested three months later, they were still able to compensate for the increased delay. The experiments show that the human brain can learn to overcome delays up to 560 milliseconds in the control of balance. This discovery may have important implications for people who develop balance problems because of older age or neurologic diseases like multiple sclerosis. It is possible that robot-assisted training therapies, like the one in this study, could help people overcome their balance impairments.


Subject(s)
Feedback, Sensory , Learning , Posture/physiology , Adult , Computer Simulation , Female , Humans , Male , Motion , Postural Balance/physiology , Robotics , Vestibule, Labyrinth/physiology , Young Adult
10.
Neuroimage Clin ; 30: 102676, 2021.
Article in English | MEDLINE | ID: mdl-34215147

ABSTRACT

Individuals with Parkinson's disease often experience postural instability, a debilitating and largely treatment-resistant symptom. A better understanding of the neural substrates contributing to postural instability could lead to more effective treatments. Constraints of current functional neuroimaging techniques, such as the horizontal orientation of most MRI scanners (forcing participants to lie supine), complicates investigating cortical and subcortical activation patterns and connectivity networks involved in healthy and parkinsonian balance control. In this cross-sectional study, we utilized a newly-validated MRI-compatible balance simulator (based on an inverted pendulum) that enabled participants to perform balance-relevant tasks while supine in the scanner. We utilized functional MRI to explore effective connectivity underlying static and dynamic balance control in healthy older adults (n = 17) and individuals with Parkinson's disease while on medication (n = 17). Participants performed four tasks within the scanner with eyes closed: resting, proprioceptive tracking of passive ankle movement, static balancing of the simulator, and dynamic responses to random perturbations of the simulator. All analyses were done in the participant's native space without spatial transformation to a common template. Effective connectivity between 57 regions of interest was computed using a Bayesian Network learning approach with false discovery rate set to 5%. The first 12 principal components of the connection weights, binomial logistic regression, and cross-validation were used to create 4 separate models: contrasting static balancing vs {rest, proprioception} and dynamic balancing vs {rest, proprioception} for both controls and individuals with Parkinson's disease. In order to directly compare relevant connections between controls and individuals with Parkinson's disease, we used connections relevant for predicting a task in either controls or individuals with Parkinson's disease in logistic regression with Least Absolute Shrinkage and Selection Operator regularization. During dynamic balancing, we observed decreased connectivity between different motor areas and increased connectivity from the brainstem to several cortical and subcortical areas in controls, while individuals with Parkinson's disease showed increased connectivity associated with motor and parietal areas, and decreased connectivity from brainstem to other subcortical areas. No significant models were found for static balancing in either group. Our results support the notion that dynamic balance control in individuals with Parkinson's disease relies more on cortical motor areas compared to healthy older adults, who show a preference of subcortical control during dynamic balancing.


Subject(s)
Parkinson Disease , Aged , Bayes Theorem , Brain/diagnostic imaging , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Parkinson Disease/diagnostic imaging
11.
J Physiol ; 599(14): 3611-3625, 2021 07.
Article in English | MEDLINE | ID: mdl-34047370

ABSTRACT

KEY POINTS: We examined the influence of cutaneous feedback from the heel and metatarsal regions of the foot sole on the soleus stretch reflex pathway during standing. We found that heel electrical stimuli suppressed and metatarsal stimuli enhanced the soleus vibration response. Follow-up experiments indicated that the interaction between foot sole cutaneous feedback and the soleus vibration response was likely not mediated by presynaptic inhibition and was contingent upon a modulation at the ⍺-motoneuron pool level. The spatially organized interaction between cutaneous feedback from the foot sole and the soleus vibration response provides information about how somatosensory information is combined to appropriately respond to perturbations during standing. ABSTRACT: Cutaneous feedback from the foot sole provides balance-relevant information and has the potential to interact with spinal reflex pathways. In this study, we examined how cutaneous feedback from the foot sole (heel and metatarsals) influenced the soleus response to proprioceptive stimuli during standing. We delivered noisy vibration (10-115 Hz) to the right Achilles tendon while we intermittently applied electrical pulse trains (five 1-ms pulses at 200 Hz, every 0.8-1.0 s) to the skin under either the heel or the metatarsals of the ipsilateral foot sole. We analysed time-dependent (referenced to cutaneous stimuli) coherence and cross-correlations between the vibration acceleration and rectified soleus EMG. Vibration-EMG coherence was observed across a bandwidth of ∼10-80 Hz, and coherence was suppressed by heel but enhanced by metatarsal cutaneous stimuli. Cross-correlations showed soleus EMG was correlated with the vibration (∼40 ms lag) and cross-correlations were also suppressed by heel (from 104-155 ms) but enhanced by metatarsal (from 76-128 ms) stimuli. To examine the neural mechanisms mediating this reflex interaction, we conducted two further experiments to probe potential contributions from (1) presynaptic inhibition, and (2) modulations at the ⍺- and γ-motoneuron pools. Results suggest the cutaneous interactions with the stretch reflex pathway required a modulation at the ⍺-motoneuron pool and were likely not mediated by presynaptic inhibition. These findings demonstrate that foot sole cutaneous information functionally tunes the stretch reflex pathway during the control of upright posture and balance.


Subject(s)
Achilles Tendon , Metatarsal Bones , Electric Stimulation , Electromyography , H-Reflex , Heel , Humans , Muscle, Skeletal , Reflex, Stretch
12.
Neurosci Lett ; 736: 135290, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32768557

ABSTRACT

Primary (Ia) sensory afferents that innervate muscle spindles provide strong synaptic input to homonymous motoneurons and are thought to play a role in balance control. In addition, Ia afferents have broad heteronymous connections; i.e., projections to motoneurons that innervate other muscles that act at the same joint as well as at different joints. The purpose of the current study was to investigate heteronymous Ia afferent connections from the triceps surae muscles to lower limb and back muscles during quiet standing in humans. We applied supra-threshold noisy vibration (10-115 Hz) to the right Achilles tendon of 12 participants maintaining quiet stance and recorded EMG activity bilaterally from homonymous (Soleus) and heteronymous muscles (Semitendinosus, Vastus Lateralis, Erector Spinae). We estimated coherence, phase, and gain between the tendon probe acceleration and rectified EMG from each muscle. We found significant coherence between the probe acceleration and EMG in ipsilateral Soleus (5-100 Hz), Semitendinosus (10-75 Hz), Vastus Lateralis (5-70 Hz), and bilateral Erector Spinae muscles (10-70 Hz). These results provide evidence that triceps surae muscle spindle afferents can influence the activity of muscles proximal to the ankle joint across a broad frequency band during quiet standing.


Subject(s)
Achilles Tendon/physiology , Muscle, Skeletal/physiology , Reflex/physiology , Standing Position , Vibration , Adult , Electromyography , Female , Humans , Male , Synapses/physiology , Young Adult
13.
J Physiol ; 598(22): 5231-5243, 2020 11.
Article in English | MEDLINE | ID: mdl-32822066

ABSTRACT

KEY POINTS: Proprioceptive sensory information from the ankle joint is critical for the control of upright posture and balance. We examined the influence of age (n = 54 healthy adults, 20-82 years old) on lower limb muscle responses to proprioceptive perturbations evoked by Achilles tendon vibration during standing. The frequency bandwidth of the muscle response became narrower, and the gain (the muscle response relative to the stimulus) and scaling (increases in response amplitude with increases in stimulus amplitude) decreased with age. Mechanics of the muscle-tendon unit (mechanical admittance) did not differ with age during standing, and thus probably did not mediate the age-related changes observed in soleus muscle responses to vibration. These findings add to our understanding of how altered proprioceptive responses may contribute to impaired mobility and falls with ageing. ABSTRACT: Proprioceptive information from the ankle joint plays an important role in the control of upright posture and balance. Ageing influences many components of the sensorimotor system, which leads to poor mobility and falls. However, little is known about the influence of age on the characteristics of short latency muscle responses to proprioceptive stimuli during standing across frequencies that are encoded by muscle spindles. We examined the frequency characteristics of the soleus muscle response to noisy (10-115 Hz) Achilles tendon vibration during standing in 54 healthy adults across a broad age range (20-82 years). The results showed the frequency bandwidth of the soleus response (vibration-electromyography coherence) became progressively narrower with ageing. Coherence was significantly lower in middle-aged relative to young adults between ∼7-11 and 28-62 Hz, lower in older relative to middle-aged adults between ∼30-50 Hz and lower in older relative to young adults between ∼7-64 Hz. Muscle response gain was similar between age groups at low frequencies, although gain was lower in older relative to young adults between ∼28-54 Hz. Across the age range, the response amplitude (peak-to-peak cross-covariance) and the scaling of the response with stimulus amplitude were both negatively correlated with age. Muscle-tendon mechanics (admittance) did not differ with age, suggesting this did not mediate differences in soleus responses. Our findings suggest there is a progressive change in the soleus response to proprioceptive stimuli with ageing during standing, which could contribute to poorer mobility and falls.


Subject(s)
Achilles Tendon , Adult , Aged , Aged, 80 and over , Electromyography , Humans , Middle Aged , Muscle, Skeletal , Postural Balance , Proprioception , Vibration , Young Adult
14.
Diabetes ; 69(1): 3-11, 2020 01.
Article in English | MEDLINE | ID: mdl-31862690

ABSTRACT

Diabetes is associated with a loss of somatosensory and motor function, leading to impairments in gait, balance, and manual dexterity. Data-driven neuroimaging studies frequently report a negative impact of diabetes on sensorimotor regions in the brain; however, relationships with sensorimotor behavior are rarely considered. The goal of this review is to consider existing diabetes neuroimaging evidence through the lens of sensorimotor neuroscience. We review evidence for diabetes-related disruptions to three critical circuits for movement control: the cerebral cortex, the cerebellum, and the basal ganglia. In addition, we discuss how central nervous system (CNS) degeneration might interact with the loss of sensory feedback from the limbs due to peripheral neuropathy to result in motor impairments in individuals with diabetes. We argue that our understanding of movement impairments in individuals with diabetes is incomplete without the consideration of disease complications in both the central and peripheral nervous systems. Neuroimaging evidence for disrupted central sensorimotor circuitry suggests that there may be unrecognized behavioral impairments in individuals with diabetes. Applying knowledge from the existing literature on CNS contributions to motor control and motor learning in healthy individuals provides a framework for hypothesis generation for future research on this topic.


Subject(s)
Brain/physiology , Central Nervous System/physiopathology , Diabetic Neuropathies/etiology , Movement Disorders/etiology , Movement/physiology , Diabetes Mellitus/physiopathology , Diabetes Mellitus/psychology , Diabetic Neuropathies/physiopathology , Humans , Mental Disorders/etiology , Mental Disorders/physiopathology , Movement Disorders/physiopathology , Neural Pathways/physiology , Neural Pathways/physiopathology , Neuroimaging/methods
15.
Front Neurol ; 10: 922, 2019.
Article in English | MEDLINE | ID: mdl-31555197

ABSTRACT

Background: Postural instability is a debilitating and largely treatment-resistant symptom of Parkinson's disease (PD). A better understanding of the neural substrates contributing to postural instability could lead to new targets for improved pharmacological and neurosurgical interventions. However, investigating these neural substrates necessitates the use of functional MRI scanners, which are almost exclusively horizontally-based. Objective: We aimed to develop, and validate the use of, an MRI compatible balance simulator to study static and dynamic balance control in PD patients and elderly controls. Methods: Our MRI compatible balance simulator allowed participants to actively balance an inverted pendulum by activating postural muscles around the ankle joint while supine. Two studies were performed to compare static and dynamic balance performance between upright stance and simulated stance in PD patients and controls. Study 1 (14 PD; 20 controls) required participants to maintain static balance during upright and simulated stance for 120 s with eyes open and closed. In study 2 (20 PD; 22 controls) participants repeated the static balance task (80 s, eyes closed only), and also completed a dynamic balance task which required maintaining balance while experiencing random anterior-posterior perturbations applied to the trunk/pendulum. Postural sway of the body/pendulum was measured using an angular velocity sensor (SwayStarTM, study 1) and Optotrak motion capture (study 2). Outcome measures were amplitude and frequency of center of mass sway for static balance, and peak and time-to-peak of center of mass displacement and velocity for dynamic balance. Results: PD patients had larger sway amplitude during both upright and simulated static balance compared to controls. PD patients had larger peak and time-to-peak sway, and larger time-to-peak sway velocity, during simulated, but not upright, dynamic balance compared to controls. Conclusions: Deficits in static and dynamic balance control can be detected in PD patients using a novel MRI compatible balance simulator. This technique allows for functional neuroimaging to be combined with balance-relevant tasks, and provides a new means to create insights into the neural substrates contributing to postural instability in PD.

16.
J Neurophysiol ; 122(5): 2119-2129, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31553669

ABSTRACT

To probe the frequency characteristics of somatosensory responses in the triceps surae muscles, we previously applied suprathreshold noisy vibration to the Achilles tendon and correlated it with ongoing triceps surae muscle activity (recorded via surface EMG) during standing. Stronger responses to tendon stimuli were observed in soleus (Sol) relative to medial gastrocnemius (MGas) surface EMG; however, it is unknown whether differences in motor unit activity or limitations of surface EMG could have influenced this finding. Here, we inserted indwelling EMG into Sol and MGas to record the activity of single motor units while we applied noisy vibration (10-115 Hz) to the right Achilles tendon of standing participants. We analyzed the relationship between vibration acceleration and the spike activity of active single motor units through estimates of coherence, gain, phase, and cross-covariance. We also applied sinusoidal vibration at frequencies from 10 to 100 Hz (in 5-Hz increments) to examine whether motor units demonstrate nonlinear synchronization or phase locking at higher frequencies. Relative to MGas single motor units, Sol units demonstrated stronger coherence and higher gain with noisy vibration across a bandwidth of 7-68 Hz, and larger peak-to-peak cross-covariance at all four stimulus amplitudes examined. Sol and MGas motor unit activity was modulated over the time course of the sinusoidal stimuli across all frequencies, but their phase-locking behavior was minimal. These findings suggest Sol plays a prominent role in responding to disturbances transmitted through the Achilles tendon across a broad frequency band during standing.NEW & NOTEWORTHY We examined the relationship between Achilles tendon stimuli and spike times of single soleus (Sol) and medial gastrocnemius (MGas) motor units during standing. Relative to MGas, Sol units demonstrated stronger coherence and higher gain with noisy stimuli across a bandwidth of 7-68 Hz. Sol and MGas units demonstrated minimal nonlinear phase locking with sinusoidal stimuli. These findings indicate Sol plays a prominent role in responding to tendon stimuli across a broad frequency band.


Subject(s)
Achilles Tendon/physiology , Muscle, Skeletal/physiology , Standing Position , Vibration , Adult , Evoked Potentials, Motor , Feedback, Sensory , Female , Humans , Male , Muscle Contraction
17.
Neuroscience ; 404: 413-422, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30790669

ABSTRACT

Postural threat decreases center of pressure displacements yet increases the magnitude of movement-related conscious sway perception during quiet standing. It is unknown how these changes influence perception of whole body movement during dynamic stance. The aim of this study was to examine how postural threat influences whole-body movements and conscious perception of these movements during continuous pseudo-random support surface perturbations to stance. Sixteen healthy young adults stood on a moveable platform with their eyes closed for 7 min in a low threat (1.1 m above ground, away from edge) then high threat (3.2 m above ground, near edge) condition. Continuous pseudorandom roll platform rotations (± 4.5°, < 0.5 Hz) evoked large amplitude sway in the medio-lateral (ML) direction. Participants were asked to remain upright and avoid a fall at all times while tracking their ML body movements using a hand-held rotary encoder. Kinematic data was recorded using three markers placed on the upper trunk. Questionnaires assessed anxiety, fear and confidence. Electrodermal activity (EDA) was recorded as an indicator of arousal. Height-induced threat increased fear, anxiety and EDA, and decreased confidence. Trunk sway amplitude remained constant, while tracked movement amplitude increased at height. The gain for perceived to trunk movement was significantly increased at height across frequencies. Threat-related increases in sensitivity of sensory systems related to postural control and changes in cognitive and attention processes may lead to misperceptions of actual movement amplitudes, which may be important when examining increased fall risk in those with a fear of falling.


Subject(s)
Fear/physiology , Motion Perception/physiology , Movement/physiology , Postural Balance/physiology , Rotation , Adult , Fear/psychology , Female , Humans , Male , Random Allocation , Young Adult
18.
J Physiol ; 596(21): 5251-5265, 2018 11.
Article in English | MEDLINE | ID: mdl-30176053

ABSTRACT

KEY POINTS: Threats to standing balance (postural threat) are known to facilitate soleus tendon-tap reflexes, yet the mechanisms driving reflex changes are unknown. Scaling of ramp-and-hold dorsiflexion stretch reflexes to stretch velocity and amplitude were examined as indirect measures of changes to muscle spindle dynamic and static function with height-induced postural threat. Overall, stretch reflexes were larger with threat. Furthermore, the slope (gain) of the stretch-velocity vs. short-latency reflex amplitude relationship was increased with threat. These findings are interpreted as indirect evidence for increased muscle spindle dynamic sensitivity, independent of changes in background muscle activity levels, with a threat to standing balance. We argue that context-dependent scaling of stretch reflexes forms part of a multisensory tuning process where acquisition and/or processing of balance-relevant sensory information is continuously primed to facilitate feedback control of standing balance in challenging balance scenarios. ABSTRACT: Postural threat increases soleus tendon-tap (t-) reflexes. However, it is not known whether t-reflex changes are a result of central modulation, altered muscle spindle dynamic sensitivity or combined spindle static and dynamic sensitization. Ramp-and-hold dorsiflexion stretches of varying velocities and amplitudes were used to examine velocity- and amplitude-dependent scaling of short- (SLR) and medium-latency (MLR) stretch reflexes as an indirect indicator of spindle sensitivity. t-reflexes were also performed to replicate previous work. In the present study, we examined the effects of postural threat on SLR, MLR and t-reflex amplitude, as well as SLR-stretch velocity scaling. Forty young-healthy adults stood with one foot on a servo-controlled tilting platform and the other on a stable surface. The platform was positioned on a hydraulic lift. Threat was manipulated by having participants stand in low (height 1.1 m; away from edge) then high (height 3.5 m; at the edge) threat conditions. Soleus stretch reflexes were recorded with surface electromyography and SLRs and MLRs were probed with fixed-amplitude variable-velocity stretches. t-reflexes were evoked with Achilles tendon taps using a linear motor. SLR, MLR and t-reflexes were 11%, 9.5% and 16.9% larger, respectively, in the high compared to low threat condition. In 22 out of 40 participants, SLR amplitude was correlated to stretch velocity at both threat levels. In these participants, the gain of the SLR-velocity relationship was increased by 36.1% with high postural threat. These findings provide new supportive evidence for increased muscle spindle dynamic sensitivity with postural threat and provide further support for the context-dependent modulation of human somatosensory pathways.


Subject(s)
Postural Balance , Reflex, Stretch , Feedback, Physiological , Female , Humans , Male , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Psychomotor Performance , Young Adult
19.
Gait Posture ; 66: 21-25, 2018 10.
Article in English | MEDLINE | ID: mdl-30138743

ABSTRACT

BACKGROUND: Height-related changes in postural control can alter feedback used to control balance, which may lead to a mismatch in perceived and actual sway changes during quiet stance. However, there is still a need to examine how these changes affect the ability to detect limits of stability (and movements related to base of support limits). RESEARCH QUESTION: The aim of this study was to examine how changes in height-related threat influence conscious perceptions of body position during voluntary balance tasks. METHODS: Twenty young healthy adults, fitted with kinematic markers on the right side of the body, stood on a forceplate mounted to a hydraulic lift placed at two heights (0.8 m and 3.2 m). At height (completed first), participants leaned as far forward as possible, at the ankle joint, while trying to remain as an inverted pendulum. Then, at each height, participants stood with eyes open, and voluntarily leaned to one of ten targets (10%-100% maximum lean) displayed visually as angular displacement of body segments on a screen. Once on target, participants reported a perceived position relative to their maximum lean. Balance confidence, fear and anxiety, and physiological arousal (hand electrodermal activity, EDA) were recorded and statistically tested using paired sample t-tests. Actual and perceived body positions were tested using repeated measures ANOVAs (height x target). RESULTS: Height significantly increased EDA, fear and anxiety, and decreased balance confidence. Participants voluntarily leaned to all target positions equally across heights. However, at any given target position, the perceived lean changed with height. When participants are asked to lean to a target in at height, their amount of perceived lean was larger by 4.9%, on average (range: 1.8%-9.7%). SIGNIFICANCE: This modulation in perceived limits of stability may increase the risk of falls in those who have an increased fear of falling.


Subject(s)
Postural Balance/physiology , Posture/physiology , Proprioception/physiology , Psychometrics/methods , Accidental Falls , Adult , Anxiety/physiopathology , Biomechanical Phenomena , Body Height , Fear/physiology , Feedback, Sensory/physiology , Female , Galvanic Skin Response/physiology , Healthy Volunteers , Humans , Male , Movement/physiology
20.
J Neurophysiol ; 120(3): 1233-1246, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29873612

ABSTRACT

Cutaneous afferents convey exteroceptive information about the interaction of the body with the environment and proprioceptive information about body position and orientation. Four classes of low-threshold mechanoreceptor afferents innervate the foot sole and transmit feedback that facilitates the conscious and reflexive control of standing balance. Experimental manipulation of cutaneous feedback has been shown to alter the control of gait and standing balance. This has led to a growing interest in the design of intervention strategies that enhance cutaneous feedback and improve postural control. The advent of single-unit microneurography has allowed the firing and receptive field characteristics of foot sole cutaneous afferents to be investigated. In this review, we consolidate the available cutaneous afferent microneurographic recordings from the foot sole and provide an analysis of the firing threshold, and receptive field distribution and density of these cutaneous afferents. This work enhances the understanding of the foot sole as a sensory structure and provides a foundation for the continued development of sensory augmentation insoles and other tactile enhancement interventions.


Subject(s)
Action Potentials , Foot/innervation , Foot/physiology , Mechanoreceptors/physiology , Touch/physiology , Feedback, Physiological , Humans , Microelectrodes , Physical Stimulation , Postural Balance , Sensory Thresholds
SELECTION OF CITATIONS
SEARCH DETAIL
...