Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 2743, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488087

ABSTRACT

Concerted multidisciplinary efforts have led to the development of Cyclin-Dependent Kinase inhibitors (CDKi's) as small molecule drugs and chemical probes of intracellular CDK function. However, conflicting data has been reported on the inhibitory potency of CDKi's and a systematic characterization of affinity and selectivity against intracellular CDKs is lacking. We have developed a panel of cell-permeable energy transfer probes to quantify target occupancy for all 21 human CDKs in live cells, and present a comprehensive evaluation of intracellular isozyme potency and selectivity for a collection of 46 clinically-advanced CDKi's and tool molecules. We observed unexpected intracellular activity profiles for a number of CDKi's, offering avenues for repurposing of highly potent molecules as probes for previously unreported targets. Overall, we provide a broadly applicable method for evaluating the selectivity of CDK inhibitors in living cells, and present a refined set of tool molecules to study CDK function.


Subject(s)
Cell Cycle Checkpoints/drug effects , Cyclin-Dependent Kinase Inhibitor Proteins/pharmacology , Cyclin-Dependent Kinases/antagonists & inhibitors , CDC2 Protein Kinase , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Cyclin-Dependent Kinase 9 , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , Phosphorylation , Structure-Activity Relationship
2.
Cell Chem Biol ; 25(2): 206-214.e11, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29174542

ABSTRACT

For kinase inhibitors, intracellular target selectivity is fundamental to pharmacological mechanism. Although a number of acellular techniques have been developed to measure kinase binding or enzymatic inhibition, such approaches can fail to accurately predict engagement in cells. Here we report the application of an energy transfer technique that enabled the first broad-spectrum, equilibrium-based approach to quantitatively profile target occupancy and compound affinity in live cells. Using this method, we performed a selectivity profiling for clinically relevant kinase inhibitors against 178 full-length kinases, and a mechanistic interrogation of the potency offsets observed between cellular and biochemical analysis. For the multikinase inhibitor crizotinib, our approach accurately predicted cellular potency and revealed improved target selectivity compared with biochemical measurements. Due to cellular ATP, a number of putative crizotinib targets are unexpectedly disengaged in live cells at a clinically relevant drug dose.


Subject(s)
Adenosine Triphosphate/metabolism , Phosphotransferases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Cell Survival , Dose-Response Relationship, Drug , Energy Transfer , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Mass Spectrometry , Molecular Structure , Phosphotransferases/metabolism , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL