Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 289(1978): 20220358, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35858071

ABSTRACT

Mistletoes are hemiparasitic plants and keystone species in many ecosystems globally. Given predicted increases in drought frequency and intensity, mistletoes may be crucial for moderating drought impacts on community structure. Dependent on host vascular flows, mistletoes can succumb to stress when water availability falls, making them susceptible to mortality during drought. We counted mistletoe across greater than 350 000 km2 of southeastern Australia and conducted standardized bird surveys between 2016 and 2021, spanning a major drought event in 2018-2019. We aimed to identify predictors of mistletoe abundance and mortality and determine whether mistletoes might moderate drought impacts on woodland birds. Live mistletoe abundance varied with tree species composition, land use and presence of mistletoebirds. Mistletoe mortality was widespread, consistent with high 2018/2019 summer temperatures, low 2019/2020 summer rainfall and the interaction between summer temperatures and rainfall in 2019/2020. The positive association between surviving mistletoes and woodland birds was greatest in the peak drought breeding seasons of 2018/2019 and 2019/2020, particularly for small residents and insectivores. Paradoxically, mistletoes could moderate drought impacts on birds, but are themselves vulnerable to drought-induced mortality. An improved understanding of the drivers and dynamics of mistletoe mortality is needed to address potential cascading trophic impacts associated with mistletoe die-off.


Subject(s)
Mistletoe , Animals , Birds , Droughts , Ecosystem , Plant Breeding
2.
Proc Biol Sci ; 288(1947): 20210225, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33726592

ABSTRACT

Cultures in humans and other species are maintained through interactions among conspecifics. Declines in population density could be exacerbated by culture loss, thereby linking culture to conservation. We combined historical recordings, citizen science and breeding data to assess the impact of severe population decline on song culture, song complexity and individual fitness in critically endangered regent honeyeaters (Anthochaera phrygia). Song production in the remaining wild males varied dramatically, with 27% singing songs that differed from the regional cultural norm. Twelve per cent of males, occurring in areas of particularly low population density, completely failed to sing any species-specific songs and instead sang other species' songs. Atypical song production was associated with reduced individual fitness, as males singing atypical songs were less likely to pair or nest than males that sang the regional cultural norm. Songs of captive-bred birds differed from those of all wild birds. The complexity of regent honeyeater songs has also declined over recent decades. We therefore provide rare evidence that a severe decline in population density is associated with the loss of vocal culture in a wild animal, with concomitant fitness costs for remaining individuals. The loss of culture may be a precursor to extinction in declining populations that learn selected behaviours from conspecifics, and therefore provides a useful conservation indicator.


Subject(s)
Passeriformes , Songbirds , Animals , Humans , Male , Population Density , Species Specificity , Vocalization, Animal
3.
PLoS One ; 14(10): e0223953, 2019.
Article in English | MEDLINE | ID: mdl-31647830

ABSTRACT

Uncovering the population genetic histories of non-model organisms is increasingly possible through advances in next generation sequencing and DNA sampling of museum specimens. This new information can inform conservation of threatened species, particularly those for which historical and contemporary population data are unavailable or challenging to obtain. The critically endangered, nomadic regent honeyeater Anthochaera phrygia was abundant and widespread throughout south-eastern Australia prior to a rapid population decline and range contraction since the 1970s. A current estimated population of 250-400 individuals is distributed sparsely across 600,000 km2 from northern Victoria to southern Queensland. Using hybridization RAD (hyRAD) techniques, we obtained a SNP dataset from 64 museum specimens (date 1879-1960), 102 'recent' (1989-2012) and 52 'current' (2015-2016) wild birds sampled throughout the historical and contemporary range. We aimed to estimate population genetic structure, genetic diversity and population size of the regent honeyeater prior to its rapid decline. We then assessed the impact of the decline on recent and current population size, structure and genetic diversity. Museum sampling showed population structure in regent honeyeaters was historically low, which remains the case despite a severe fragmentation of the breeding range. Population decline has led to minimal loss of genetic diversity since the 1980's. Capacity to quantify the overall magnitude of both genetic diversity loss and population decline was limited by the poorer quality of genomic data derived from museum specimens. A rapid population decline, coupled with the regent honeyeater's high mobility, means a detectable genomic impact of this decline has not yet manifested. Extinction may occur in this nomadic species before a detectable genomic impact of small population size is realised. We discuss the implications for genetic management of endangered mobile species and enhancing the value of museum specimens in population genomic studies.


Subject(s)
Endangered Species , Genetic Variation , Genetics, Population , Genome , Population Dynamics , Songbirds/genetics , Animals , Gene Flow
4.
Trends Ecol Evol ; 32(11): 873-880, 2017 11.
Article in English | MEDLINE | ID: mdl-28890127

ABSTRACT

Reintroduction biology is a field of scientific research that aims to inform translocations of endangered species. We review two decades of published literature to evaluate whether reintroduction science is evolving in its decision-support role, as called for by advocates of evidence-based conservation. Reintroduction research increasingly addresses a priori hypotheses, but remains largely focused on short-term population establishment. Similarly, studies that directly assist decisions by explicitly comparing alternative management actions remain a minority. A small set of case studies demonstrate full integration of research in the reintroduction decision process. We encourage the use of tools that embed research in decision-making, particularly the explicit consideration of multiple management alternatives because this is the crux of any management decisions.


Subject(s)
Conservation of Natural Resources/methods , Conservation of Natural Resources/trends , Endangered Species , Animals , Ecosystem , Population Dynamics
5.
PLoS One ; 10(12): e0143746, 2015.
Article in English | MEDLINE | ID: mdl-26649426

ABSTRACT

The loss of biodiversity following fragmentation and degradation of habitat is a major issue in conservation biology. As competition for resources increases following habitat loss and fragmentation, severe population declines may occur even in common, highly mobile species; such demographic decline may cause changes within the population structure of the species. The regent honeyeater, Anthochaera phrygia, is a highly nomadic woodland bird once common in its native southeast Australia. It has experienced a sharp decline in abundance since the late 1970s, following clearing of large areas of its preferred habitat, box-ironbark woodland, within the last 200 years. A captive breeding program has been established as part of efforts to restore this species. This study used genetic data to examine the range-wide population structure of regent honeyeaters, including spatial structure, its change through time, sex differences in philopatry and mobility, and genetic differences between the captive and wild populations. There was low genetic differentiation between birds captured in different geographic areas. Despite the recent demographic decline, low spatial structure appears to have some temporal consistency. Both sexes appear to be highly mobile, and there does not seem to be significant genetic differentiation between the captive and wild populations. We conclude that management efforts for survival of this species, including habitat protection, restoration, and release of captive-bred birds into the wild, can treat the species as effectively a single genetic population.


Subject(s)
Biodiversity , Endangered Species , Genetics, Population , Passeriformes/genetics , Animal Distribution , Animals , Australia , Conservation of Natural Resources , Demography , Ecosystem , Population Dynamics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...