Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Cell Tissue Res ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748215

ABSTRACT

In teleost fish, branchial ionocytes are important sites for osmoregulation and acid-base regulation by maintaining ionic balance in the body fluid. During the early developmental stages before the formation of the gills, teleost ionocytes are localized in the yolk-sac membrane and body skin. By comparing with teleost fish, much less is known about ionocytes in developing embryos of elasmobranch fish. The present study investigated the development of ionocytes in the embryo and larva of cloudy catshark, Scyliorhinus torazame. We first observed ionocyte distribution by immunohistochemical staining with anti-Na+/K+-ATPase (NKA) and anti-vacuolar-type H+-ATPase (V-ATPase) antibodies. The NKA- and V-ATPase-rich ionocytes appeared as single cells in the gill filaments from stage 31, the stage of pre-hatching, while the ionocytes on the body skin and yolk-sac membrane were also observed. From stage 32, in addition to single ionocytes on the gill filaments, some outstanding follicular structures of NKA-immunoreactive cells were developed to fill the inter-filament region of the gill septa. The follicular ionocytes possess NKA in the basolateral membrane and Na+/H+ exchanger 3 in the apical membrane, indicating that they are involved in acid-base regulation like single NKA-rich ionocytes. Three-dimensional analysis and whole-mount immunohistochemistry revealed that the distribution of follicular ionocytes was limited to the rostral side of gill septum. The rostral sides of gill septum might be exposed to faster water flow than caudal side because the gills of sharks gently curved backward. This dissymmetric distribution of follicular ionocytes is considered to facilitate efficient body-fluid homeostasis of catshark embryo.

2.
Mol Biotechnol ; 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37480447

ABSTRACT

Cryptocaryoniasis, caused by Cryptocaryon irritans, is a significant threat to marine fish cultures in tropical and subtropical waters. However, controlling this disease remains a challenge. Fish infected with C. irritans acquires immunity; however, C. irritans is difficult to culture in large quantities, obstructing vaccine development using parasite cells. In this study, we established a method for expressing an arbitrary protein on the surface of Tetrahymena thermophila, a culturable ciliate, to develop a mimetic C. irritans. Fusing the signal peptide (SP) and glycosylphosphatidylinositol (GPI) anchor sequences of the immobilization antigen, a surface protein of C. irritans, to the fluorescent protein, monomeric Azami-green 1 (mAG1) of the stony coral Galaxea fascicularis, allowed protein expression on the surface and cilia of transgenic Tetrahymena cells. This technique may help develop transgenic Tetrahymena displaying parasite antigens on their cell surface, potentially contributing to the development of vaccines using "mimetic parasites".

3.
Zoolog Sci ; 40(2): 91-104, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37042689

ABSTRACT

For adaptation to a high salinity marine environment, cartilaginous fishes have evolved a ureosmotic strategy. They have a highly elaborate "four-loop nephron" in the kidney, which is considered to be important for reabsorption of urea from the glomerular filtrate to maintain a high concentration of urea in the body. However, the function and regulation, generally, of the "four-loop nephron" are still largely unknown due to the complicated configuration of the nephron and its many subdivided segments. Laser microdissection (LMD) followed by RNA-sequencing (RNA-seq) analysis is a powerful technique to obtain segment-dependent gene expression profiles. In the present study, using the kidney of cloudy catshark, Scyliorhinus torazame, we tested several formaldehyde-free and formaldehyde-based fixatives to optimize the fixation methods. Fixation by 1% neutral buffered formalin for 15 min resulted in sufficient RNA and structural integrities, which allowed LMD clipping of specific nephron segments and subsequent RNA-seq analysis. RNA-seq from the LMD samples of the second-loop, the fourth-loop, and the five tubular segments in the bundle zone revealed a number of specific membrane transporter genes that can characterize each segment. Among them, we examined expressions of the Na + -coupled cotransporters abundantly expressed in the second loop samples. Although the proximal II segment of the second loop is known for the elimination of excess solutes, the present results imply that the PII segment is also crucial for reabsorption of valuable solutes. Looking ahead to future studies, the segment-dependent gene expression profiling will be a powerful technique for unraveling the renal mechanisms and regulation in euryhaline elasmobranchs.


Subject(s)
Microdissection , Nephrons , Animals , Fishes , Gene Expression Profiling , RNA , Urea/metabolism
4.
Front Physiol ; 13: 914277, 2022.
Article in English | MEDLINE | ID: mdl-35711299

ABSTRACT

In teleost fishes, ionocytes in the gills are important osmoregulatory sites in maintaining ionic balance. During the embryonic stages before the formation of the gills, ionocytes are located in the yolk-sac membrane and body skin. In Mozambique tilapia embryos, quintuple-color immunofluorescence staining allowed us to classify ionocytes into four types: type I, showing only basolateral Na+/K+-ATPase (NKA) staining; type II, basolateral NKA and apical Na+, Cl- cotransporter 2; type III, basolateral NKA, basolateral Na+, K+, 2Cl- cotransporter 1a (NKCC1a) and apical Na+/H+ exchanger 3; and type IV, basolateral NKA, basolateral NKCC1a and apical cystic fibrosis transmembrane conductance regulator Cl- channel. The ionocyte population consisted mostly of type I, type II and type III in freshwater, while type I and IV dominated in seawater. In adult tilapia, dual observations of whole-mount immunocytochemistry and scanning electron microscopy showed morphofunctional alterations in ionocytes. After transfer from freshwater to seawater, while type-II ionocytes closed their apical openings to suspend ion absorption, type-III ionocytes with a concave surface were transformed into type IV with a pit via a transitory surface. The proposed model of functional classification of ionocytes can account not only for ion uptake in freshwater and ion secretion in seawater, but also for plasticity in ion-transporting functions of ionocytes in tilapia.

5.
Mol Cell Endocrinol ; 538: 111450, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34506867

ABSTRACT

Euryhaline fishes are capable of maintaining osmotic homeostasis in a wide range of environmental salinities. Several pleiotropic hormones, including prolactin, growth hormone, and thyroid hormones (THs) are mediators of salinity acclimation. It is unclear, however, the extent to which THs and the pituitary-thyroid axis promote the adaptive responses of key osmoregulatory organs to freshwater (FW) environments. In the current study, we characterized circulating thyroxine (T4) and 3-3'-5-triiodothyronine (T3) levels in parallel with the outer ring deiodination (ORD) activities of deiodinases (dios) and mRNA expression of dio1, dio2, and dio3 in gill during the acclimation of Mozambique tilapia (Oreochromis mossambicus) to FW. Tilapia transferred from seawater (SW) to FW exhibited reduced plasma T4 and T3 levels at 6 h. These reductions coincided with an increase in branchial dio2-like activity and decreased branchial dio1 gene expression. To assess whether dios respond to osmotic conditions and/or systemic signals, gill filaments were exposed to osmolalities ranging from 280 to 450 mOsm/kg in an in vitro incubation system. Gene expression of branchial dio1, dio2, and dio3 was not directly affected by extracellular osmotic conditions. Lastly, we observed that dio1 and dio2 expression was stimulated by thyroid-stimulating hormone in hypophysectomized tilapia, suggesting that branchial TH metabolism is regulated by systemic signals. Our collective findings suggest that THs are involved in the FW acclimation of Mozambique tilapia through their interactions with branchial deiodinases that modulate their activities in a key osmoregulatory organ.


Subject(s)
Iodide Peroxidase/genetics , Thyroxine/blood , Tilapia/physiology , Triiodothyronine/blood , Acclimatization , Animals , Female , Fish Proteins/genetics , Gene Expression Regulation, Developmental , Gills/metabolism , Gills/physiology , Male , Salinity
6.
Front Plant Sci ; 12: 675507, 2021.
Article in English | MEDLINE | ID: mdl-34220895

ABSTRACT

Hygrophila polysperma is a heterophyllous amphibious plant. The growth of H. polysperma in submerged conditions is challenging due to the low CO2 environment, increased resistance to gas diffusion, and bicarbonate ion (HCO3 -) being the dominant dissolved inorganic carbon source. The submerged leaves of H. polysperma have significantly higher rates of underwater photosynthesis compared with the terrestrial leaves. 4,4'-Diisothiocyanatostilbene-2,2'-disulfonate (DIDS), an anion exchanger protein inhibitor, and ethoxyzolamide (EZ), an inhibitor of internal carbonic anhydrase, repressed underwater photosynthesis by the submerged leaves. These results suggested that H. polysperma acclimates to the submerged condition by using HCO3 - for photosynthesis. H. polysperma transports HCO3 - into the leaf by a DIDS-sensitive HCO3 - transporter and converted to CO2 by carbonic anhydrase. Additionally, proteome analysis revealed that submerged leaves accumulated fewer proteins associated with C4 photosynthesis compared with terrestrial leaves. This finding suggested that H. polysperma is capable of C4 and C3 photosynthesis in the terrestrial and submerged leaves, respectively. The ratio of phosphoenol pyruvate carboxylase to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the submerged leaves was less than that in the terrestrial leaves. Upon anatomical observation, the terrestrial leaves exhibited a phenotype similar to the Kranz anatomy found among C4 plants; however, chloroplasts in the bundle sheath cells were not located adjacent to the vascular bundles, and the typical Kranz anatomy was absent in submerged leaves. These results suggest that H. polysperma performs proto-Kranz type photosynthesis in a terrestrial environment and shifts from a proto-Kranz type in terrestrial leaves to a HCO3 - use photosynthesis in the submerged environments.

7.
J Exp Biol ; 224(13)2021 07 01.
Article in English | MEDLINE | ID: mdl-34170318

ABSTRACT

Nutrient transfer from mother to embryo is essential for reproduction in viviparous animals. In the viviparous teleost Xenotoca eiseni (family Goodeidae), the intraovarian embryo intakes the maternal component secreted into the ovarian fluid via the trophotaenia. Our previous study reported that the epithelial layer cells of the trophotaenia incorporate a maternal protein via vesicle trafficking. However, the molecules responsible for the absorption were still elusive. Here, we focused on Cubam (Cubilin-Amnionless) as a receptor involved in the absorption, and cathepsin L as a functional protease in the vesicles. Our results indicated that the Cubam receptor is distributed in the apical surface of the trophotaenia epithelium and then is taken into the intracellular vesicles. The trophotaenia possesses acidic organelles in epithelial layer cells and cathepsin L-dependent proteolysis activity. This evidence does not conflict with our hypothesis that receptor-mediated endocytosis and proteolysis play roles in maternal macromolecule absorption via the trophotaenia in viviparous teleosts. Such nutrient absorption involving endocytosis is not a specific trait in viviparous fish. Similar processes have been reported in the larval stage of oviparous fish or the suckling stage of viviparous mammals. Our findings suggest that the viviparous teleost acquired trophotaenia-based viviparity from a modification of the intestinal absorption system common in vertebrates. This is a fundamental study to understand the strategic variation of the reproductive system in vertebrates.


Subject(s)
Cyprinodontiformes , Viviparity, Nonmammalian , Animals , Endocytosis , Female , Ovary , Oviparity
8.
Front Aging ; 2: 675395, 2021.
Article in English | MEDLINE | ID: mdl-35822031

ABSTRACT

Euryhaline teleost fish are characterized by their ability to tolerate a wide range of environmental salinities by modifying the function of osmoregulatory cells and tissues. In this study, we experimentally addressed the age-related decline in the sensitivity of osmoregulatory transcripts associated with a transfer from fresh water (FW) to seawater (SW) in the euryhaline teleost, Mozambique tilapia, Oreochromis mossambicus. The survival rates of tilapia transferred from FW to SW were inversely related with age, indicating that older fish require a longer acclimation period during a salinity challenge. The relative expression of Na+/K+/2Cl- cotransporter 1a (nkcc1a), which plays an important role in hyposmoregulation, was significantly upregulated in younger fish after SW transfer, indicating a clear effect of age in the sensitivity of branchial ionocytes. Prolactin (Prl), a hyperosmoregulatory hormone in O. mossambicus, is released in direct response to a fall in extracellular osmolality. Prl cells of 4-month-old tilapia were sensitive to hyposmotic stimuli, while those of >24-month-old fish did not respond. Moreover, the responsiveness of branchial ionocytes to Prl was more robust in younger fish. Taken together, multiple aspects of osmotic homeostasis, from osmoreception to hormonal and environmental control of osmoregulation, declined in older fish. This decline appears to undermine the ability of older fish to survive transfer to hyperosmotic environments.

9.
Proc Natl Acad Sci U S A ; 116(44): 22359-22365, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31594851

ABSTRACT

Vitellogenin (Vtg), a yolk nutrient protein that is synthesized in the livers of female animals, and subsequently carried into the ovary, contributes to vitellogenesis in oviparous animals. Thus, Vtg levels are elevated during oogenesis. In contrast, Vtg proteins have been genetically lost in viviparous mammals, thus the yolk protein is not involved in their oogenesis and embryonic development. In this study, we identified Vtg protein in the livers of females during the gestation of the viviparous teleost, Xenotoca eiseni Although vitellogenesis is arrested during gestation, biochemical assays revealed that Vtg protein was present in ovarian tissues and lumen fluid. The Vtg protein was also detected in the trophotaeniae of the intraovarian embryo. Immunoelectron microscopy revealed that Vtg protein is absorbed into intracellular vesicles in the epithelial cells of the trophotaeniae. Furthermore, extraneous Vtg protein injected into the abdominal cavity of a pregnant female was subsequently detected in the trophotaeniae of the intraovarian embryo. Our data suggest that the yolk protein is one of the matrotrophic factors supplied from the mother to the intraovarian embryo during gestation in X. eiseni.


Subject(s)
Fishes/physiology , Vitellogenins/metabolism , Viviparity, Nonmammalian , Animals , Biological Transport , Female , Fishes/metabolism , Liver/metabolism , Ovary/metabolism , Yolk Sac/metabolism
10.
Carbohydr Polym ; 223: 115062, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31426967

ABSTRACT

Nata de coco was chemically modified to afford the bacterial cellulose hydrogels carrying terminal alkynes. The resultant hydrogels were then converted into hydrogels carrying lactosides or those carrying α-2,3-sialyllactosides by the Cu+-catalyzed alkyne-azide cyclization. The stable homo association of the hydrogels carrying lactosides was observed in an aqueous solution containing Ca2+, thereby demonstrating the Ca2+-mediated lactoside-lactoside interactions. Ca2+ also stabilized the hetero associations among the hydrogels carrying lactosides and those carrying α-2,3-sialyllactosides, thereby also demonstrating the Ca2+-induced interactions between the lactosides and the α-2,3-sialyllactosides. The sizes of these hydrogels were of the order of ca. 5 mm, and their associations could thus be readily monitored with the naked eye.


Subject(s)
Cellulose/chemistry , Hydrogels/chemistry , Oligosaccharides/chemistry , Polysaccharides, Bacterial/chemistry , Alkynes/chemistry , Azides/chemistry , Calcium/chemistry , Cocos/chemistry , Cocos/microbiology , Hydrogels/chemical synthesis , Magnesium/chemistry , Plant Lectins/chemistry , Ricinus/chemistry , Sodium/chemistry
11.
Carbohydr Res ; 481: 23-30, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31220628

ABSTRACT

We synthesized phenylacetylenes containing ß-lactoside, ß-cellobioside, or ß-maltoside, and polymerized them to produce the corresponding poly (phenylacetylene)s. In these poly (phenylacetylene)s, the pendent carbohydrates were tethered to the mainchains by serinol spacers. Because similar glycosyl serinol units are found in the natural glycosphingolipids in cell membranes, the densely packed carbohydrate clusters along the poly (phenylacetylene) mainchains act as molecular mimics of cell surface glycoclusters. We analyzed the conformation of the glycosylated poly (phenylacetylene)s using circular dichroism spectroscopy, and found that the spatial carbohydrate packing within the glycoclusters changed on the addition of salts.


Subject(s)
Acetylene/analogs & derivatives , Molecular Conformation , Propanolamines/chemistry , Propylene Glycols/chemistry , Sugars/chemistry , Acetylene/chemical synthesis , Acetylene/chemistry , Chemistry Techniques, Synthetic , Glycosylation , Molecular Dynamics Simulation , Polymerization , Salts/chemistry , Stereoisomerism , Water/chemistry
12.
J Exp Biol ; 220(Pt 24): 4720-4732, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29084852

ABSTRACT

Spatiotemporal changes in branchial ionocyte distribution were investigated following transfer from seawater (SW) to freshwater (FW) in Japanese seabass. The mRNA expression levels of cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/K+/2Cl- cotransporter 1a (NKCC1a) in the gills rapidly decreased after transfer to FW, whereas Na+/H+ exchanger 3 (NHE3) and Na+/Cl- cotransporter 2 (NCC2) expression were upregulated following the transfer. Using quadruple-color whole-mount immunofluorescence staining with anti-Na+/K+-ATPase, anti-NHE3, anti-CFTR and T4 (anti-NKCC1a/NCC2) antibodies, we classified ionocytes into one SW type and two FW types: NHE3 cell and NCC2 cell. Time course observation after transfer revealed an intermediate type between SW-type and FW-type NHE3 ionocytes, suggesting functional plasticity of ionocytes. Finally, on the basis of the ionocyte classification of Japanese seabass, we observed the location of ionocyte subtypes on frozen sections of the gill filaments stained by triple-color immunofluorescence staining. Our observation indicated that SW-type ionocytes transformed into FW-type NHE3 ionocytes and at the same time shifted their distribution from filaments to lamellae. However, FW-specific NCC2 ionocytes appeared mainly in the filaments. Taken together, these findings indicate that ionocytes originated from undifferentiated cells in the filaments and expanded their distribution to the lamellae during FW acclimation.


Subject(s)
Bass/physiology , Osmoregulation , Animals , Bass/genetics , Bass/metabolism , Cell Proliferation , Cloning, Molecular , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fluorescent Antibody Technique , Fresh Water , Gills/chemistry , Gills/cytology , Gills/metabolism , Osmolar Concentration , Plasma/chemistry , RNA, Messenger , Seawater , Solute Carrier Family 12, Member 2/genetics , Solute Carrier Family 12, Member 2/metabolism
13.
J Mol Endocrinol ; 59(4): 391-402, 2017 11.
Article in English | MEDLINE | ID: mdl-28974537

ABSTRACT

Teleosts inhabiting fresh water (FW) depend upon ion-absorptive ionocytes to counteract diffusive ion losses to the external environment. A Clc Cl- channel family member, Clc-2c, was identified as a conduit for basolateral Cl- transport by Na+/Cl- cotransporter 2 (Ncc2)-expressing ionocytes in stenohaline zebrafish (Danio rerio). It is unresolved whether Clc-2c/clc-2c is expressed in euryhaline species and how extrinsic and/or intrinsic factors modulate branchial clc-2c mRNA. Here, we investigated whether environmental salinity, prolactin (Prl) and osmotic conditions modulate clc-2c expression in euryhaline Mozambique tilapia (Oreochromis mossambicus). Branchial clc-2c and ncc2 mRNAs were enhanced in tilapia transferred from seawater (SW) to FW, whereas both mRNAs were attenuated upon transfer from FW to SW. Next, we injected hypophysectomized tilapia with ovine prolactin (oPrl) and observed a marked increase in clc-2c from saline-injected controls. To determine whether Prl regulates clc-2c in a gill-autonomous fashion, we incubated gill filaments in the presence of homologous tilapia Prls (tPrl177 and tPrl188). By 24 h, tPrl188 stimulated clc-2c expression ~5-fold from controls. Finally, filaments incubated in media ranging from 280 to 450 mosmol/kg for 3 and 6 h revealed that extracellular osmolality exerts a local effect on clc-2c expression; clc-2c was diminished by hyperosmotic conditions (450 mosmol/kg) compared with isosmotic controls (330 mosmol/kg). Our collective results suggest that hormonal and osmotic control of branchial clc-2c contributes to the FW adaptability of Mozambique tilapia. Moreover, we identify for the first time a regulatory link between Prl and a Clc Cl- channel in a vertebrate.


Subject(s)
Chloride Channels/genetics , Chloride Channels/metabolism , Gills/physiology , Osmolar Concentration , Prolactin/metabolism , Salinity , Tilapia/physiology , Animals , CLC-2 Chloride Channels , Gene Expression Regulation , Male , Organ Specificity/genetics , Protein Isoforms
14.
J Exp Zool B Mol Dev Evol ; 328(3): 240-258, 2017 05.
Article in English | MEDLINE | ID: mdl-28229554

ABSTRACT

Teleost egg envelope generally consists of a thin outer layer and a thick inner layer. The inner layer of the Pacific herring egg envelope is further divided into distinct inner layers I and II. In our previous study, we cloned four zona pellucida (ZP) proteins (HgZPBa, HgZPBb, HgZPCa, and HgZPCb) from Pacific herring, two of which (HgZPBa and HgZPCa) were synthesized in the liver and two (HgZPBb and HgZPCb) in the ovary. In this study, we raised antibodies against these four proteins to identify their locations using immunohistochemistry. Our results suggest that inner layer I is constructed primarily of HgZPBa and Ca, whereas inner layer II consists primarily of HgZPBa. HgZPBb and Cb were minor components of the envelope. Therefore, the egg envelope of Pacific herring is primarily composed of liver-synthesized ZP proteins. A comparison of the thickness of the fertilized egg envelopes of 55 species suggested that egg envelopes derived from liver-synthesized ZP proteins tended to be thicker in demersal eggs than those in pelagic eggs, whereas egg envelopes derived from ovarian-synthesized ZP proteins had no such tendency. Our comparison suggests that the prehatching period of an egg with a thick egg envelope is longer than that of an egg with a thin egg envelope. We hypothesized that acquisition of liver-synthesized ZP proteins during evolution conferred the ability to develop a thick egg envelope, which allowed species with demersal eggs to adapt to mechanical stress in the prehatching environment by thickening the egg envelope, while pelagic egg envelopes have remained thin.


Subject(s)
Biological Evolution , Ovum/metabolism , Zona Pellucida Glycoproteins/biosynthesis , Zona Pellucida/metabolism , Amino Acid Sequence/genetics , Animals , Cloning, Molecular , Egg Proteins/biosynthesis , Egg Proteins/genetics , Female , Fishes/genetics , Fishes/growth & development , Ovary/growth & development , Ovary/metabolism , Ovum/growth & development , Zona Pellucida Glycoproteins/genetics
15.
J Endocrinol ; 230(3): 325-37, 2016 09.
Article in English | MEDLINE | ID: mdl-27402066

ABSTRACT

Aquaporins (Aqps) are expressed within key osmoregulatory tissues where they mediate the movement of water and selected solutes across cell membranes. We leveraged the functional plasticity of Mozambique tilapia (Oreochromis mossambicus) gill epithelium to examine how Aqp3, an aquaglyceroporin, is regulated in response to osmoregulatory demands. Particular attention was paid to the actions of critical osmoregulatory hormones, namely, prolactin (Prl), growth hormone and cortisol. Branchial aqp3 mRNA levels were modulated following changes in environmental salinity, with enhanced aqp3 mRNA expression upon transfer from seawater to freshwater (FW). Accordingly, extensive Aqp3 immunoreactivity was localized to cell membranes of branchial epithelium in FW-acclimated animals. Upon transferring hypophysectomized tilapia to FW, we identified that a pituitary factor(s) is required for Aqp3 expression in FW. Replacement with ovine Prl (oPrl) was sufficient to stimulate Aqp3 expression in hypophysectomized animals held in FW, an effect blocked by coinjection with cortisol. Both oPrl and native tilapia Prls (tPrl177 and tPrl188) stimulated aqp3 in incubated gill filaments in a concentration-related manner. Consistent with in vivo responses, coincubation with cortisol blocked oPrl-stimulated aqp3 expression in vitro Our data indicate that Prl and cortisol act directly upon branchial epithelium to regulate Aqp3 in tilapia. Thus, within the context of the diverse actions of Prl on hydromineral balance in vertebrates, we define a new role for Prl as a regulator of Aqp expression.


Subject(s)
Aquaporin 3/metabolism , Fish Proteins/metabolism , Gills/metabolism , Hydrocortisone/pharmacology , Prolactin/pharmacology , Tilapia/metabolism , Animals , Animals, Genetically Modified , Aquaporin 3/genetics , Fish Proteins/genetics , Fresh Water , Gills/drug effects , RNA, Messenger/genetics , Seawater , Sheep , Tilapia/genetics , Water-Electrolyte Balance/drug effects
16.
Zoological Lett ; 2: 12, 2016.
Article in English | MEDLINE | ID: mdl-27307998

ABSTRACT

BACKGROUND: During the course of evolution, fishes have acquired adaptability to various salinity environments, and acquirement of seawater (SW) adaptability has played important roles in fish evolution and diversity. However, little is known about how saline environments influence the acquirement of SW adaptability. The Japanese medaka Oryzias latipes is a euryhaline species that usually inhabits freshwater (FW), but is also adaptable to full-strength SW when transferred through diluted SW. In the present study, we examined how past SW experience affects hyposmoregulatory ability in Japanese medaka. RESULTS: For the preparation of SW-experienced fish, FW medaka were acclimated to SW after pre-acclimation to 1/2 SW, and the SW-acclimated fish were transferred back to FW. The SW-experienced fish and control FW fish (SW-inexperienced fish) were transferred directly to SW. Whereas control FW fish did not survive direct transfer to SW, 1/4 of SW-experienced fish adapted successfully to SW. Although there were no significant differences in blood osmolality and plasma Na(+) and Cl(-) concentrations between SW-experienced and control FW medaka in FW, increments in these parameters following SW transfer were lower in SW-experienced fish than in control FW fish. The gene expression of SW-type Na(+), K(+)-ATPase (NKA) in the gills of SW-experienced medaka increased more quickly after direct SW transfer compared with the expression in control FW fish. Prior to SW transfer, the density of NKA-immunoreactive ionocytes in the gills was higher in SW-experienced fish than in control FW fish. Ionocytes expressing CFTR Cl(-) channel at the apical membrane and those forming multicellular complexes, both of which were characteristic of SW-type ionocytes, were also increased in SW-experienced fish. CONCLUSION: These results indicate that past SW experience enhances the capacity of Na(+) and Cl(-) secretion in ionocytes and thus hypoosmoregulatory ability of Japanese medaka, suggesting the presence of epigenetic mechanisms involved in seawater adaptation.

17.
Article in English | MEDLINE | ID: mdl-27040185

ABSTRACT

In teleost fishes, it is well-established that the gill serves as an important ionoregulatory organ in addition to its primary function of respiratory gas exchange. In elasmobranchs, however, the ionoregulatory function of the gills is still incompletely understood. Although two types of ionocytes, Na(+)/K(+)-ATPase (NKA)-rich (type-A) cell and vacuolar-type H(+)-ATPase (V-ATPase)-rich (type-B) cell, have been found in elasmobranch fishes, these cells were considered to function primarily in acid-base regulation. In the present study, we examined ion-transporting proteins expressed in ionocytes of Japanese-banded houndshark, Triakis scyllium, reared in full-strength seawater (SW) and transferred to diluted (30%) SW. In addition to the upregulation of NKA and Na(+)/H(+) exchanger type 3 (NHE3) mRNAs in the type-A ionocytes, we found that Na(+), Cl(-) cotransporter (NCC, Slc12a3) is expressed in a subpopulation of the type-B ionocytes, and that the expression level of NCC mRNA was enhanced in houndsharks transferred to a low-salinity environment. These results suggest that elasmobranch gill ionocytes contribute to NaCl uptake in addition to the already described function of acid-base regulation, and that NCC is most probably one of the key molecules for hyper-osmoregulatory function of elasmobranch gills. The existence of two types of ionocytes (NHE3- and NCC-expressing cells) that are responsible for NaCl absorption seems to be a common feature in both teleosts and elasmobranchs for adaptation to a low salinity environment. A possible driving mechanism for NCC in type-B ionocytes is discussed.


Subject(s)
Elasmobranchii/physiology , Fish Proteins/genetics , Fish Proteins/metabolism , Gills/cytology , Acclimatization , Animals , Cloning, Molecular , Elasmobranchii/metabolism , Gene Expression Regulation , Gills/metabolism , Osmoregulation , Phylogeny , Salinity , Seawater , Sodium-Hydrogen Exchanger 3 , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Solute Carrier Family 12, Member 1/genetics , Solute Carrier Family 12, Member 1/metabolism , Solute Carrier Family 12, Member 3/genetics , Solute Carrier Family 12, Member 3/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
18.
J Exp Zool B Mol Dev Evol ; 326(2): 125-35, 2016 03.
Article in English | MEDLINE | ID: mdl-26987447

ABSTRACT

Syngnathiform fishes carry their eggs in a brood structure found in males. The brood structure differs from species to species: seahorses carry eggs within enclosed brood pouch, messmate pipefish carry eggs in the semi-brood pouch, and alligator pipefish carry eggs in the egg compartment on abdomen. These egg protection strategies were established during syngnathiform evolution. In the present study, we compared the hatching mode of protected embryos of three species. Electron microscopic observations revealed that alligator pipefish and messmate pipefish egg envelopes were thicker than those of seahorses, suggesting that the seahorse produces a weaker envelope. Furthermore, molecular genetic analysis revealed that these two pipefishes possessed the egg envelope-digesting enzymes, high choriolytic enzyme (HCE), and low choriolytic enzyme (LCE), as do many euteleosts. In seahorses, however, only HCE gene expression was detected. When searching the entire seahorse genome by high-throughput DNA sequencing, we did not find a functional LCE gene and only a trace of the LCE gene exon was found, confirming that the seahorse LCE gene was pseudogenized during evolution. Finally, we estimated the size and number of hatching gland cells expressing hatching enzyme genes by whole-mount in situ hybridization. The seahorse cells were the smallest of the three species, while they had the greatest number. These results suggest that the isolation of eggs from the external environment by paternal bearing might bring the egg envelope thin, and then, the hatching enzyme genes became pseudogenized. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Biological Evolution , Smegmamorpha/embryology , Smegmamorpha/genetics , Animals , Cloning, Molecular , DNA, Complementary , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Enzymologic , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Ovum
19.
Am J Physiol Regul Integr Comp Physiol ; 309(10): R1251-63, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26377558

ABSTRACT

This study characterized the local effects of extracellular osmolality and prolactin (PRL) on branchial ionoregulatory function of a euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). First, gill filaments were dissected from freshwater (FW)-acclimated tilapia and incubated in four different osmolalities, 280, 330, 380, and 450 mosmol/kg H2O. The mRNA expression of Na(+)/K(+)-ATPase α1a (NKA α1a) and Na(+)/Cl(-) cotransporter (NCC) showed higher expression with decreasing media osmolalities, while Na(+)/K(+)/2Cl(-) cotransporter 1a (NKCC1a) and PRL receptor 2 (PRLR2) mRNA levels were upregulated by increases in media osmolality. We then incubated gill filaments in media containing ovine PRL (oPRL) and native tilapia PRLs (tPRL177 and tPRL188). oPRL and the two native tPRLs showed concentration-dependent effects on NCC, NKAα1a, and PRLR1 expression; Na(+)/H(+) exchanger 3 (NHE3) expression was increased by 24 h of incubation with tPRLs. Immunohistochemical observation showed that oPRL and both tPRLs maintained a high density of NCC- and NKA-immunoreactive ionocytes in cultured filaments. Furthermore, we found that tPRL177 and tPRL188 differentially induce expression of these ion transporters, according to incubation time. Together, these results provide evidence that ionocytes of Mozambique tilapia may function as osmoreceptors, as well as directly respond to PRL to modulate branchial ionoregulatory functions.


Subject(s)
Ion Transport/physiology , Osmolar Concentration , Prolactin/pharmacology , Sodium Chloride Symporters/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Tilapia/physiology , Animals , Extracellular Matrix , Gene Expression Regulation/physiology , Gills , Male , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism , Sodium Chloride Symporters/genetics , Up-Regulation
20.
Gen Comp Endocrinol ; 207: 94-102, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24681189

ABSTRACT

The native distribution of Mozambique tilapia, Oreochromis mossambicus, is characterized by estuarine areas subject to salinity variations between fresh water (FW) and seawater (SW) with tidal frequency. Osmoregulation in the face of changing environmental salinity is largely mediated through the neuroendocrine system and involves the activation of ion uptake and extrusion mechanisms in osmoregulatory tissues. We compared plasma osmolality, plasma prolactin (PRL), pituitary PRL mRNA, and mRNA of branchial ion pumps, transporters, channels, and PRL receptors in tilapia reared in FW, SW, brackish water (BW) and in tidally-changing salinity, which varied between FW (TF) and SW (TS) every 6h. Plasma PRL was higher in FW tilapia than in SW, BW, TF, and TS tilapia. Unlike tilapia reared in FW or SW, fish in salinities that varied tidally showed no correlation between plasma osmolality and PRL. In FW fish, gene expression of PRL receptor 1 (PRLR1), Na(+)/Cl(-) cotransporter (NCC), aquaporin 3 (AQP3) and two isoforms of Na(+)/K(+)-ATPase (NKA α1a and NKA α1b) was higher than that of SW, BW or tidally-changing salinity fish. Gene expression of the Na(+)/K(+)/2Cl(-) cotransporter (NKCC1a), and the cystic fibrosis transmembrane conductance regulator (CFTR) were higher in fish in SW, BW or a tidally-changing salinity than in FW fish. Immunocytochemistry revealed that ionocytes of fish in tidally-changing salinities resemble ionocytes of SW fish. This study indicated that tilapia reared in a tidally-changing salinity can compensate for large changes in external osmolality while maintaining osmoregulatory parameters within a narrow range closer to that observed in SW-acclimated fish.


Subject(s)
Acclimatization/physiology , Pituitary Gland/metabolism , Salinity , Tilapia/growth & development , Water Movements , Animals , Aquaporin 3/genetics , Aquaporin 3/metabolism , Fresh Water , Immunoenzyme Techniques , Ion Transport , Prolactin/genetics , Prolactin/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Seawater , Sodium-Potassium-Exchanging ATPase/metabolism , Tilapia/metabolism , Water-Electrolyte Balance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...