Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Environ Sci Pollut Res Int ; 31(31): 44318-44328, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951396

ABSTRACT

To reduce aquatic eutrophication, measurements of bioavailable phosphorus (BAP) rather than total phosphorus (TP) are deemed critical. However, current methods require much time to separate sediments from river water, which limits the routine measurement of BAP in rivers. Therefore, in this study, a simultaneous multisample ultrasonic extraction method is proposed to directly measure total BAP (TBAP) in river water without the separation of sediment and water. Spike-and-recovery assessments showed that at least three extractions are required to maintain efficiency. A process including 2-min extraction time and three extractions was suggested. The concentrations of TBAP extracted by this process showed no significant differences with the spike calculations. Furthermore, river water TBAP was quantified using the conventional and proposed method to examine the practicality of using the proposed method for simultaneous multisample ultrasonic extraction and to evaluate its adaptability to actual river water analysis. The extracted concentrations matched those obtained using the conventional method, in which total BAP is calculated as the sum of dissolved BAP and particulate BAP; no significant difference was observed between the concentrations. Ultrasonic extraction was considerably less time-consuming than the conventional method because more samples could be analyzed during a single run. Therefore, the simultaneous multisample ultrasonic extraction method proposed in this study can be used to directly quantify total BAP in river water.


Subject(s)
Environmental Monitoring , Phosphorus , Rivers , Water Pollutants, Chemical , Phosphorus/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Ultrasonics
2.
Hum Genome Var ; 11(1): 16, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548746

ABSTRACT

Osteogenesis imperfecta is characterized by frequent fractures, bone deformities, and other systemic symptoms. Severe osteogenesis imperfecta may progress to hydrocephalus; however, treatment strategies for this complication remain unclear. Here, we describe severe osteogenesis imperfecta in an infant with symptomatic hydrocephalus treated with ventriculosubgaleal shunt placement. Targeted next-generation sequencing revealed novel compound heterozygous CRTAP variants, i.e., NM_006371.5, c.241 G > T, p.(Glu81*) and NM_006371.5, c.923-2_932del. We suggest that ventriculosubgaleal shunt placement is an effective and safe treatment for hydrocephalus in patients with severe osteogenesis imperfecta.

3.
Clin Epigenetics ; 15(1): 78, 2023 05 06.
Article in English | MEDLINE | ID: mdl-37147716

ABSTRACT

BACKGROUND: Our previous study suggested that assisted reproductive technology (ART) may be a possible risk factor for the development of epimutation-mediated imprinting disorders (epi-IDs) for mothers aged ≥ 30 years. However, whether ART or advanced parental age facilitates the development of uniparental disomy-mediated IDs (UPD-IDs) has not yet been investigated. RESULTS: We enrolled 130 patients with aneuploid UPD-IDs including various IDs confirmed by molecular studies and obtained ART data of the general population and patients with epi-IDs from a robust nationwide database and our previous report, respectively. We compared the proportion of ART-conceived livebirths and maternal childbearing age between patients with UPD-IDs and the general population or patients with epi-IDs. The proportion of ART-conceived livebirths in patients with aneuploid UPD-IDs was consistent with that in the general population of maternal age ≥ 30 years and was lower than that in the patients with epi-IDs, although there was no significant difference. The maternal childbearing age of patients with aneuploid UPD-IDs was skewed to the increased ages with several cases exceeding the 97.5th percentile of maternal childbearing age of the general population and significantly higher than that of patients with epi-IDs (P < 0.001). In addition, we compared the proportion of ART-conceived livebirths and parental age at childbirth between patients with UPD-IDs caused by aneuploid oocytes (oUPD-IDs) and that by aneuploid sperm (sUPD-IDs). Almost all ART-conceived livebirths were identified in patients with oUPD-IDs, and both maternal age and paternal age at childbirth were significantly higher in patients with oUPD-IDs than in patients with sUPD-IDs. Because maternal age and paternal age were strongly correlated (rs = 0.637, P < 0.001), higher paternal age in oUPD-IDs was explained by the higher maternal age in this group. CONCLUSIONS: Different from the case of epi-IDs, ART itself is not likely to facilitate the development of aneuploid UPD-IDs. We demonstrated that advanced maternal age can be a risk factor for the development of aneuploid UPD-IDs, particularly oUPD-IDs.


Subject(s)
Genomic Imprinting , Uniparental Disomy , Female , Humans , Male , Pregnancy , Uniparental Disomy/genetics , DNA Methylation , Semen , Aneuploidy , Risk Assessment , Mothers , Oocytes , Reproductive Techniques, Assisted/adverse effects
4.
Mar Pollut Bull ; 182: 114023, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35973243

ABSTRACT

Plastic pollution in the ocean primarily originates from the land-derived mismanaged plastic waste that is transported by rivers. This study aimed to estimate the plastic litter generation in the surface water in Jakarta and Indonesia. A field survey was conducted at six riverine sampling points (upstream to downstream) and three holding facilities of the litter in Jakarta during the rainy season. The Jakarta Open Data database was used to estimate the tonnage of plastic litter. By mass, plastic comprised approximately 74 % of the anthropogenic litter in rivers and 87 % in holding facilities. The riverine plastic proportion slightly increased downstream. Approximately 9.9 g/person/day of plastic litter was discharged into Jakarta's surface water during rainy season and recovered by floating booms. To reduce plastic pollution and its severe impacts on aquatic ecosystems and human health, further field investigation is necessary to design an effective clean-up system and litter-prevention strategy.


Subject(s)
Ecosystem , Plastics , Environmental Monitoring , Humans , Indonesia , Waste Products/analysis , Water
5.
J Clin Endocrinol Metab ; 107(8): e3121-e3133, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35583390

ABSTRACT

CONTEXT: Children born small-for-gestational-age with short stature (SGA-SS) is associated with (epi)genetic defects, including imprinting disorders (IDs), pathogenic copy number variants (PCNVs), and pathogenic variants of genes involved in growth. However, comprehensive studies evaluating these 3 factors are very limited. OBJECTIVE: To clarify the contribution of PCNVs and candidate pathogenic variants to SGA-SS. DESIGN: Comprehensive molecular analyses consisting of methylation analysis, copy number analysis, and multigene sequencing. METHODS: We enrolled 140 patients referred to us for genetic testing for SGA-SS. Among them, we excluded 42 patients meeting Netchine-Harbison clinical scoring system criteria for Silver-Russell syndrome and 4 patients with abnormal methylation levels of the IDs-related differentially methylated regions. Consequently, we conducted copy number analysis and multigene sequencing for 86 SGA-SS patients with sufficient sample volume. We also evaluated clinical phenotypes of patients with PCNVs or candidate pathogenic variants. RESULTS: We identified 8 (9.3%) and 11 (12.8%) patients with PCNVs and candidate pathogenic variants, respectively. According to the American College of Medical Genetics standards and guidelines, 5 variants were classified as pathogenic and the remaining 6 variants were classified as variants of unknown significance. Genetic diagnosis was made in 12 patients. All patients with PCNVs or candidate pathogenic variants did not correspond perfectly to characteristic clinical features of each specific genetic cause. CONCLUSION: We clarified the contribution of PCNVs and pathogenic variants to SGA-SS without IDs. Comprehensive molecular analyses, including copy number analysis and multigene sequencing, should be considered for patients with unknown SGA-SS etiology.


Subject(s)
Dwarfism , Silver-Russell Syndrome , DNA Copy Number Variations , Dwarfism/genetics , Genetic Testing , Humans , Infant, Newborn , Infant, Small for Gestational Age , Silver-Russell Syndrome/genetics
6.
J Hum Genet ; 67(10): 607-611, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35606504

ABSTRACT

Silver-Russel syndrome (SRS) is a representative imprinting disorder (ID) characterized by growth failure and diagnosed by clinical features. Recently, international consensus has recommended using the Netchine-Harbison clinical scoring system (NH-CSS) as clinical diagnostic criteria. Loss of methylation of H19/IGF2:intergenic differentially methylated region (H19LOM) and maternal uniparental disomy chromosome 7 (UPD(7)mat) are common etiologies of SRS; however, other IDs, pathogenic variants (PVs) of genes, and pathogenic copy number variants (PCNVs) have been reported in patients meeting NH-CSS. To clarify the frequency and clinical characteristics of each etiology, we conducted (epi)genetic analysis in 173 patients satisfying NH-CSS. H19LOM and UPD(7)mat were identified in 34.1%. PCNVs, other IDs, and PVs were in 15.0%. Patients with all six NH-CSS items were most frequently observed with H19LOM and UPD(7)mat. This study confirmed the suitability of NH-CSS as clinical diagnostic criteria, the (epi)genetic heterogeneity of SRS, and showed the necessity of further discussion regarding the "SRS spectrum".


Subject(s)
Silver-Russell Syndrome , DNA Copy Number Variations , DNA Methylation , Genomic Imprinting , Humans , Phenotype , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Uniparental Disomy/genetics
7.
Water Sci Technol ; 83(4): 762-770, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33617484

ABSTRACT

For improving the management of watershed eutrophication, methods for measuring bioavailable phosphorus (BAP) are more important than measurements of total phosphorus (TP). BAP in particulate form (P-BAP) is an important substance that promotes eutrophication, especially during rainy seasons. Only a portion of particulate phosphorus (PP) is taken up by algae that contribute to eutrophication. Erosion and runoff associated with rainfall transport PP bound to sediments and soil particles to surface waters, thus increasing PP concentration. This research evaluated an extraction method using an ultrasonic washing machine for extraction time and frequency. Extraction at a frequency of 28-45 kHz and an extraction time of 1 min resulted in extracted P concentrations almost the same as concentrations extracted using conventional methods. This new method requires less time and is more efficient than conventional methods because it extracts P from multiple samples in a single step. Results indicate that extraction using an ultrasonic washing machine is a promising method for rapidly obtaining BAP from sediments and soil particles.


Subject(s)
Phosphorus , Soil , Environmental Monitoring , Eutrophication , Geologic Sediments , Phosphorus/analysis , Rain , Ultrasonics , Water Movements
8.
Endocr J ; 68(1): 111-117, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-32879144

ABSTRACT

SHORT syndrome is a rare developmental disorder frequently associated with growth failure and insulin resistant diabetes mellitus (IRDM). Since GH has a diabetogenic effect, GH therapy has been regarded as a contraindication. We observed a Brazilian girl with SHORT syndrome who received GH therapy from 4 6/12 years of age for SGA short stature. GH dosage was increased from 0.23 to 0.36 mg/kg/week, but statural response to GH therapy remained poor. Her blood HbA1c level, though it remained 5.5-6.0% in childhood, began to elevate with puberty and increased to 9.2% at 10 6/12 years of age, despite the discontinuation of GH therapy at 9 11/12 years of age. Laboratory studies indicated antibody-negative IRDM. She was treated with metformin and canagliflozin (a sodium glucose co-transporter 2 (SGLT2) inhibitor), which ameliorated overt diurnal hyperglycemia and mild nocturnal hypoglycemia and reduced her blood HbA1c around 7%. Whole exome sequencing revealed a de novo heterozygous pathogenic variant (c.1945C>T:p.(Arg649Trp)) in PIK3R1 known as the sole causative gene for SHORT syndrome. Subsequent literature review for patients with molecularly confirmed SHORT syndrome revealed the development of IRDM in 10 of 15 GH-untreated patients aged ≥12 years but in none of three GH-treated and six GH-untreated patients aged ≤10 years. These findings imply a critical role of pubertal development and/or advanced age rather than GH therapy in the development of IRDM, and a usefulness of SGLT2 inhibitor in the treatment of IRDM.


Subject(s)
Diabetes Mellitus/diagnosis , Growth Disorders/complications , Hypercalcemia/complications , Insulin Resistance/physiology , Metabolic Diseases/complications , Nephrocalcinosis/complications , Brazil , Canagliflozin/administration & dosage , Child , Diabetes Complications/diagnosis , Diabetes Complications/drug therapy , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Drug Therapy, Combination , Female , Growth Disorders/diagnosis , Growth Disorders/drug therapy , Growth Disorders/metabolism , Human Growth Hormone/administration & dosage , Humans , Hypercalcemia/diagnosis , Hypercalcemia/drug therapy , Hypercalcemia/metabolism , Metabolic Diseases/diagnosis , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Metformin/administration & dosage , Nephrocalcinosis/diagnosis , Nephrocalcinosis/drug therapy , Nephrocalcinosis/metabolism , Puberty/drug effects , Puberty/metabolism , Sodium-Glucose Transporter 2 Inhibitors/administration & dosage
9.
J Med Genet ; 58(6): 427-432, 2021 06.
Article in English | MEDLINE | ID: mdl-32576657

ABSTRACT

BACKGROUND: ZNF597, encoding a zinc-finger protein, is the human-specific maternally expressed imprinted gene located on 16p13.3. The parent-of-origin expression of ZNF597 is regulated by the ZNF597:TSS-DMR, of which only the paternal allele acquires methylation during postimplantation period. Overexpression of ZNF597 may contribute to some of the phenotypes associated with maternal uniparental disomy of chromosome 16 (UPD(16)mat), and some patients with UPD(16)mat presenting with Silver-Russell syndrome (SRS) phenotype have recently been reported. METHODS: A 6-year-old boy presented with prenatal growth restriction, macrocephaly at birth, forehead protrusion in infancy and clinodactyly of the fifth finger. Methylation, expression, microsatellite marker, single nucleotide polymorphism array and trio whole-exome sequencing analyses were conducted. RESULTS: Isolated hypomethylation of the ZNF597:TSS-DMR and subsequent loss of imprinting and overexpression of ZNF597 were confirmed in the patient. Epigenetic alterations, such as UPD including UPD(16)mat and other methylation defects, were excluded. Pathogenic sequence or copy number variants affecting his phenotypes were not identified, indicating that primary epimutation occurred postzygotically. CONCLUSION: We report the first case of isolated ZNF597 imprinting defect, showing phenotypic overlap with SRS despite not satisfying the clinical SRS criteria. A novel imprinting disorder entity involving the ZNF597 imprinted domain can be speculated.


Subject(s)
Abnormalities, Multiple/genetics , Fetal Growth Retardation/genetics , Genomic Imprinting , Transcription Factors/genetics , Child , DNA Methylation , Humans , Male , Silver-Russell Syndrome/genetics
10.
J Clin Endocrinol Metab ; 106(3): 802-813, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33236057

ABSTRACT

BACKGROUND: (Epi)genetic disorders associated with small-for-gestational-age with short stature (SGA-SS) include imprinting disorders (IDs). Silver-Russell syndrome (SRS) is a representative ID in SGA-SS and has heterogenous (epi)genetic causes. SUBJECTS AND METHODS: To clarify the contribution of IDs to SGA-SS and the molecular and phenotypic spectrum of SRS, we recruited 269 patients with SGA-SS, consisting of 103 and 166 patients referred to us for genetic testing for SGA-SS and SRS, respectively. After excluding 20 patients with structural abnormalities detected by comparative genomic hybridization analysis using catalog array, 249 patients were classified into 3 subgroups based on the Netchine-Harbison clinical scoring system (NH-CSS), SRS diagnostic criteria. We screened various IDs by methylation analysis for differentially methylated regions (DMRs) related to known IDs. We also performed clinical analysis. RESULTS: These 249 patients with SGA-SS were classified into the "SRS-compatible group" (n = 148), the "non-SRS with normocephaly or relative macrocephaly at birth group" (non-SRS group) (n = 94), or the "non-SRS with relative microcephaly at birth group" (non-SRS with microcephaly group) (n = 7). The 44.6% of patients in the "SRS-compatible group," 21.3% of patients in the "non-SRS group," and 14.3% in the "non-SRS with microcephaly group" had various IDs. Loss of methylation of the H19/IGF2:intergenic-DMR and uniparental disomy chromosome 7, being major genetic causes of SRS, was detected in 30.4% of patients in the "SRS-compatible group" and in 13.8% of patients in the "non-SRS group." CONCLUSION: We clarified the contribution of IDs as (epi)genetic causes of SGA-SS and the molecular and phenotypic spectrum of SRS. Various IDs constitute underlying factors for SGA-SS, including SRS.


Subject(s)
Dwarfism/genetics , Genomic Imprinting/genetics , Infant, Small for Gestational Age , Silver-Russell Syndrome/genetics , Abnormalities, Multiple/epidemiology , Abnormalities, Multiple/genetics , Case-Control Studies , Child, Preschool , Comparative Genomic Hybridization , DNA Mutational Analysis , Dwarfism/drug therapy , Dwarfism/epidemiology , Female , Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/genetics , Human Growth Hormone/therapeutic use , Humans , Infant, Newborn , Infant, Small for Gestational Age/growth & development , Japan/epidemiology , Male , Microcephaly/complications , Microcephaly/epidemiology , Microcephaly/genetics , Phenotype , Silver-Russell Syndrome/classification , Silver-Russell Syndrome/drug therapy , Silver-Russell Syndrome/epidemiology
11.
Clin Epigenetics ; 12(1): 86, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546215

ABSTRACT

BACKGROUND: Silver-Russell syndrome (SRS) is characterized by growth failure and dysmorphic features. Major (epi)genetic causes of SRS are loss of methylation on chromosome 11p15 (11p15 LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). However, IGF2, CDKN1C, HMGA2, and PLAG1 mutations infrequently cause SRS. In addition, other imprinting disturbances, pathogenic copy number variations (PCNVs), and monogenic disorders sometimes lead to SRS phenotype. This study aimed to clarify the frequency and clinical features of the patients with gene mutations among etiology-unknown patients with SRS phenotype. RESULTS: Multigene sequencing was performed in 92 out of 336 patients referred to us for genetic testing for SRS. The clinical features of the patients were evaluated based on the Netchine-Harbison clinical scoring system. None of the patients showed 11p15 LOM, upd(7)mat, abnormal methylation levels for six differentially methylated regions (DMRs), namely, PLAGL1:alt-TSS-DMR on chromosome 6, KCNQ1OT1:TSS-DMR on chromosome 11, MEG3/DLK1:IG-DMR on chromosome 14, MEG3:TSS-DMR on chromosome 14, SNURF:TSS-DMR on chromosome 15, and GNAS A/B:TSS-DMR on chromosome 20, PCNVs, or maternal uniparental disomy of chromosome 16. Using next-generation sequencing and Sanger sequencing, we screened four SRS-causative genes and 406 genes related to growth failure and/or skeletal dysplasia. We identified four pathogenic or likely pathogenic variants in responsible genes for SRS (4.3%: IGF2 in two patients, CDKN1C, and PLAG1), and five pathogenic variants in causative genes for known genetic syndromes presenting with growth failure (5.4%: IGF1R abnormality (IGF1R), SHORT syndrome (PIK3R1), Floating-Harbor syndrome (SRCAP), Pitt-Hopkins syndrome (TCF4), and Noonan syndrome (PTPN11)). Functional analysis indicated the pathogenicity of the CDKN1C variant. The variants we detected in CDKN1C and PLAG1 were the second and third variants leading to SRS, respectively. Our patients with CDKN1C and PLAG1 variants showed similar phenotypes to previously reported patients. Furthermore, our data confirmed IGF1R abnormality, SHORT syndrome, and Floating-Harbor syndrome are differential diagnoses of SRS because of the shared phenotypes among these syndromes and SRS. On the other hand, the patients with pathogenic variants in causative genes for Pitt-Hopkins syndrome and Noonan syndrome were atypical of these syndromes and showed partial clinical features of SRS. CONCLUSIONS: We identified nine patients (9.8%) with pathogenic or likely pathogenic variants out of 92 etiology-unknown patients with SRS phenotype. This study expands the molecular spectrum of SRS phenotype.


Subject(s)
DNA Copy Number Variations/genetics , DNA Methylation/genetics , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Adenosine Triphosphatases/genetics , Adolescent , Cell Cycle Proteins/genetics , Child , Child, Preschool , Class Ia Phosphatidylinositol 3-Kinase/genetics , Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , Diagnosis, Differential , Epigenomics/methods , Facies , Female , Growth Disorders/diagnosis , Growth Disorders/genetics , Heart Septal Defects, Ventricular/diagnosis , Heart Septal Defects, Ventricular/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Hypercalcemia/diagnosis , Hypercalcemia/genetics , Hyperventilation/diagnosis , Hyperventilation/genetics , Insulin-Like Growth Factor II/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Male , Metabolic Diseases/diagnosis , Metabolic Diseases/genetics , Mutation , Nephrocalcinosis/diagnosis , Nephrocalcinosis/genetics , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Silver-Russell Syndrome/etiology , Transcription Factor 4/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Uniparental Disomy/genetics
12.
J Clin Endocrinol Metab ; 105(1)2020 01 01.
Article in English | MEDLINE | ID: mdl-31544945

ABSTRACT

OBJECTIVE: IGF2 is a paternally expressed growth-promoting gene. Here, we report five cases with IGF2 mutations and review IGF2 mutation-positive patients described in the literature. We also compare clinical features between patients with IGF2 mutations and those with H19/IGF2:IG-DMR epimutations. RESULTS: We recruited five cases with IGF2 mutations: case 1 with a splice site mutation (c.-6-1G>C) leading to skipping of exon 2 and cases 2-5 with different missense mutations (p.(Cys70Tyr), p.(Cys71Arg), p.(Cys33Ser), and p.(Cys45Ser)) affecting cysteine residues involved in the S-S bindings. All the mutations resided on the paternally inherited allele, and the mutation of case 5 was present in a mosaic condition. Clinical assessment revealed Silver-Russell syndrome (SRS) phenotype with Netchine-Harbison scores of ≥5/6 in all the apparently nonmosaic 14 patients with IGF2 mutations (cases 1-4 described in this study and 10 patients reported in the literature). Furthermore, compared with H19/IGF2:IG-DMR epimutations, IGF2 mutations were associated with low frequency of hemihypoplasia, high frequency of feeding difficulty and/or reduced body mass index, and mild degree of relative macrocephaly, together with occasional development of severe limb malformations, high frequency of cardiovascular anomalies and developmental delay, and low serum IGF-II values. CONCLUSIONS: This study indicates that IGF2 mutations constitute a rare but important cause of SRS. Furthermore, while both IGF2 mutations and H19/IGF2:IG-DMR epimutations lead to SRS, a certain degree of phenotypic difference is observed between the two groups, probably due to the different IGF2 expression pattern in target tissues.


Subject(s)
Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , DNA Methylation , Genomic Imprinting , Insulin-Like Growth Factor II/genetics , Mutation , Adolescent , Adult , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/pathology , Male , Paternal Inheritance , Prognosis , RNA, Long Noncoding/genetics , Silver-Russell Syndrome/genetics , Silver-Russell Syndrome/pathology , Young Adult
13.
J Med Genet ; 56(6): 413-418, 2019 06.
Article in English | MEDLINE | ID: mdl-30242100

ABSTRACT

BACKGROUND: Recently, a patient with maternal uniparental disomy of chromosome 16 (UPD(16)mat) presenting with Silver-Russell syndrome (SRS) phenotype was reported. SRS is characterised by growth failure and dysmorphic features. OBJECTIVE: To clarify the prevalence of UPD(16)mat in aetiology-unknown patients with SRS phenotype and phenotypic differences between UPD(16)mat and SRS. METHODS: We studied 94 patients with SRS phenotype of unknown aetiology. Sixty-three satisfied the Netchine-Harbison clinical scoring system (NH-CSS) criteria, and 25 out of 63 patients showed both protruding forehead and relative macrocephaly (clinical SRS). The remaining 31 patients met only three NH-CSS criteria, but were clinically suspected as having SRS. To detect UPD(16)mat, we performed methylation analysis for the ZNF597:TSS-differentially methylated region (DMR) on chromosome 16 and subsequently performed microsatellite, SNP array and exome analyses in the patients with hypomethylated ZNF597:TSS-DMR. RESULTS: We identified two patients (2.1%) with a mixture of maternal isodisomy and heterodisomy of chromosome 16 in 94 aetiology-unknown patients with SRS phenotype. Both patients exhibited preterm birth and prenatal and postnatal growth failure. The male patient had ventricular septal defect and hypospadias. Whole-exome sequencing detected no gene mutations related to their phenotypes. CONCLUSION: We suggest considering genetic testing for UPD(16)mat in SRS phenotypic patients without known aetiology.


Subject(s)
Chromosomes, Human, Pair 16 , DNA Methylation , Phenotype , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/etiology , Uniparental Disomy , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant , Male , Transcription Factors/genetics , Young Adult
14.
Molecules ; 23(7)2018 Jul 19.
Article in English | MEDLINE | ID: mdl-30029521

ABSTRACT

A novel nor-phragmalin-type limonoid, named carapanosin D (1), and two novel mexicanolide-type limonoids, carapanosins E (2) and F (3), were isolated from the seed oil of andiroba (Carapa guianensis Aublet), a traditional medicine in Brazil and Latin American countries. Their structures were unambiguously determined on the basis of spectroscopic analyses using one-dimensional (1D) and two-dimensional (2D) NMR techniques and High resolution Fast Atom Bombardment Mass Spectrometry (HRFABMS). Compounds 1⁻3 were evaluated for their effects on the production of nitric oxide (NO) in Lipopolysaccharide (LPS)-activated mouse peritoneal macrophages. The NO inhibitory assay suggested that compounds 2 and 3 have high potency as inhibitors of macrophage activation.


Subject(s)
Lipopolysaccharides/immunology , Macrophages/drug effects , Macrophages/physiology , Meliaceae/chemistry , Nitric Oxide/biosynthesis , Plant Extracts/pharmacology , Seeds/chemistry , Animals , Cell Line , Cell Survival/drug effects , Limonins/chemistry , Macrophage Activation , Magnetic Resonance Spectroscopy , Mice , Molecular Structure , Plant Extracts/chemistry , RAW 264.7 Cells
15.
J Clin Endocrinol Metab ; 103(6): 2083-2088, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29878129

ABSTRACT

Context: Maternal uniparental disomy for chromosome 20 [UPD(20)mat], resulting in aberrant expression of imprinted transcripts at the GNAS locus, is a poorly characterized condition. These patients manifested a phenotype similar to that of Silver-Russell syndrome (SRS) and small for gestational age-short stature (SGA-SS); however, the etiological relationship between UPD(20)mat and SRS/SGA-SS remains unclear. Moreover, no report has described endocrinological assessment of UPD(20)mat patients, although paternal UPD(20), the mirror image entity of UPD(20)mat, is known to cause multiple hormone resistance reflecting reduced α-subunit of the stimulatory G protein expression. Participants: Patients 1 to 5 showed nonmosaic heterodisomy and/or isodisomy for the entire chromosome 20. Patients 1 to 3 and 4 were identified through UPD(20)mat screening for 55 patients with etiology-unknown SRS and 96 patients with SGA-SS, respectively. Patient 5 was identified through molecular analysis for patients with developmental defects. Patients 1 to 5 manifested postnatal growth failure and feeding problems, with or without developmental delay, and other clinical features. Patients 1 to 4 were born SGA. Patients 4 and 5 exhibited hypercalcemia and low or low-normal parathyroid hormone levels. Patient 1 showed constantly decreased thyroid-stimulating hormone (TSH) levels after 12 years of age, although she had a normal TSH level at 5.2 years of age. Conclusion: The results suggest that UPD(20)mat underlies growth failure and feeding problems with additional features and could account for >5% of etiology-unknown SRS and small percentages of SGA-SS. Most important, this study provides an indication that UPD(20)mat can be associated with hypersensitivity of hormone receptors, which may gradually develop with age.


Subject(s)
Chromogranins/genetics , Chromosomes, Human, Pair 20 , GTP-Binding Protein alpha Subunits, Gs/genetics , Silver-Russell Syndrome/diagnosis , Calcium/blood , Child , Child, Preschool , Female , Humans , Male , Mothers , Parathyroid Hormone/blood , Phenotype , Silver-Russell Syndrome/blood , Silver-Russell Syndrome/genetics , Uniparental Disomy
16.
Water Sci Technol ; 76(5-6): 1510-1522, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28953477

ABSTRACT

Payatas landfill in Quezon City, Philippines, releases leachate to the Marikina River through a creek. Multivariate statistical techniques were applied to study temporal and spatial variations in water quality of a segment of the Marikina River. The data set included 12 physico-chemical parameters for five monitoring stations over a year. Cluster analysis grouped the monitoring stations into four clusters and identified January-May as dry season and June-September as wet season. Principal components analysis showed that three latent factors are responsible for the data set explaining 83% of its total variance. The chemical oxygen demand, biochemical oxygen demand, total dissolved solids, Cl- and PO43- are influenced by anthropogenic impact/eutrophication pollution from point sources. Total suspended solids, turbidity and SO42- are influenced by rain and soil erosion. The highest state of pollution is at the Payatas creek outfall from March to May, whereas at downstream stations it is in May. The current study indicates that the river monitoring requires only four stations, nine water quality parameters and testing over three specific months of the year. The findings of this study imply that Payatas landfill requires a proper leachate collection and treatment system to reduce its impact on the Marikina River.


Subject(s)
Environmental Monitoring/methods , Rivers/chemistry , Water Quality , Biological Oxygen Demand Analysis , Cities , Cluster Analysis , Eutrophication , Multivariate Analysis , Principal Component Analysis , Rain , Seasons , Time Factors , Water Pollutants, Chemical/chemistry
18.
Clin Epigenetics ; 9: 52, 2017.
Article in English | MEDLINE | ID: mdl-28515796

ABSTRACT

BACKGROUND: Silver-Russell syndrome (SRS) is a rare congenital disorder characterized by pre- and postnatal growth failure and dysmorphic features. Recently, pathogenic copy number variations (PCNVs) and imprinting defects other than hypomethylation of the H19-differentially methylated region (DMR) and maternal uniparental disomy chromosome 7 have been reported in patients with the SRS phenotype. This study aimed to clarify the frequency and clinical features of patients with SRS phenotype caused by PCNVs. METHODS: We performed array comparative genomic hybridization analysis using a catalog array for 54 patients satisfying the Netchine-Harbison clinical scoring system (NH-CSS) (SRS-compatible) and for 28 patients presenting with three NH-CSS items together with triangular face and/or fifth finger clinodactyly and/or brachydactyly (SRS-like) without abnormal methylation levels of 9 DMRs related to known imprinting disorders. We then investigated the clinical features of patients with PCNVs. RESULTS: Three of the 54 SRS-compatible patients (5.6%) and 2 of the 28 SRS-like patients (7.1%) had PCNVs. We detected 3.5 Mb deletion in 4p16.3, mosaic trisomy 18, and 3.77-4.00 Mb deletion in 19q13.11-12 in SRS-compatible patients, and 1.41-1.97 Mb deletion in 7q11.23 in both SRS-like patients. Congenital heart diseases (CHDs) were identified in two patients and moderate to severe global developmental delay was observed in four patients. CONCLUSIONS: Of the patients in our study, 5.6% of SRS-compatible and 7.1% of SRS-like patients had PCNVs. All PCNVs have been previously reported for genetic causes of contiguous deletion syndromes or mosaic trisomy 18. Our study suggests patients with PCNVs, who have a phenotype resembling SRS, show a high tendency towards CHDs and/or apparent developmental delay.


Subject(s)
Comparative Genomic Hybridization/methods , DNA Copy Number Variations , Developmental Disabilities/genetics , Heart Diseases/congenital , Silver-Russell Syndrome/genetics , Child , Child, Preschool , DNA Methylation , Developmental Disabilities/diagnosis , Epigenesis, Genetic , Female , Genetic Heterogeneity , Genomic Imprinting , Heart Diseases/diagnosis , Heart Diseases/genetics , Humans , Infant , Male , Young Adult
19.
Hum Genome Var ; 4: 17008, 2017.
Article in English | MEDLINE | ID: mdl-28326187

ABSTRACT

Nuclear receptor subfamily 5, group A, member 1 (NR5A1) is a nuclear receptor involved in gonadal and adrenal development. We identified a novel C-terminally truncating NR5A1 mutation, p.Leu423Trpfs*7, in dizygotic twins with 46,XY disorders of sex development. Our results highlight the functional importance of C-terminal region of NR5A1 and indicate that NR5A1 mutations can be associated with intrafamilial phenotypic variations, progressive testicular dysfunction, hypogonadotropic hypogonadism, and borderline adrenal dysfunction.

20.
Proc Natl Acad Sci U S A ; 114(9): E1737-E1744, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28196885

ABSTRACT

A crucial issue in neonatal medicine is the impact of preterm birth on the developmental trajectory of the brain. Although a growing number of studies have shown alterations in the structure and function of the brain in preterm-born infants, we propose a method to detect subtle differences in neurovascular and metabolic functions in neonates and infants. Functional near-infrared spectroscopy (fNIRS) was used to obtain time-averaged phase differences between spontaneous low-frequency (less than 0.1 Hz) oscillatory changes in oxygenated hemoglobin (oxy-Hb) and those in deoxygenated hemoglobin (deoxy-Hb). This phase difference was referred to as hemoglobin phase of oxygenation and deoxygenation (hPod) in the cerebral tissue of sleeping neonates and infants. We examined hPod in term, late preterm, and early preterm infants with no evidence of clinical issues and found that all groups of infants showed developmental changes in the values of hPod from an in-phase to an antiphase pattern. Comparison of hPod among the groups revealed that developmental changes in hPod in early preterm infants precede those in late preterm and term infants at term equivalent age but then, progress at a slower pace. This study suggests that hPod measured using fNIRS is sensitive to the developmental stage of the integration of circular, neurovascular, and metabolic functions in the brains of neonates and infants.


Subject(s)
Brain/metabolism , Hemoglobins/metabolism , Oxyhemoglobins/metabolism , Female , Gestational Age , Humans , Infant, Newborn , Infant, Premature/metabolism , Male , Premature Birth/metabolism , Spectroscopy, Near-Infrared/methods , Term Birth/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL