Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Biol Rep ; 50(10): 8683-8690, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37578577

ABSTRACT

Snakins of the Snakin/Gibberellic Acid Stimulated in Arabidopsis (GASA) family are short sequenced peptides consisting of three different regions: a C-terminal GASA domain, an N-terminal signal sequence and a variable region. The GASA domain is comprised of 12 conserved cysteine residues responsible for the structural stability of the peptide. Snakins are playing a variety of roles in response to various biotic stresses such as bacterial, fungal, and nematodes infections and abiotic stress like water scarcity, saline condition, and reactive oxygen species. These properties make snakins very effective biotechnological tools for possible therapeutic and agricultural applications. This review was attempted to highlight and summarize the antifungal and antibacterial potential of snakins, also emphasizing their sequence characteristics, distributions, expression patterns and biological activities. In addition, further details of transgene expression in various plant species for enhanced fungal and bacterial resistance is also discussed, with special emphasis on their potential applications in crop protection and combating plant pathogens.


Subject(s)
Anti-Infective Agents , Arabidopsis , Plant Proteins/genetics , Disease Resistance/genetics , Plants/genetics , Anti-Infective Agents/pharmacology , Arabidopsis/genetics , Peptides/metabolism , Genetic Engineering , Gene Expression Regulation, Plant
2.
Front Plant Sci ; 13: 1001499, 2022.
Article in English | MEDLINE | ID: mdl-36226302

ABSTRACT

Plant pathogens cause serious diseases to agricultural crops which lead to food insecurity in the world. To combat plant pathogens, various strategies have been developed including the use of agrochemicals. The overuse of these chemicals is now leading to the pesticide-resistant capability of pathogens. To overcome this problem, modern nanobiotechnology offers the production of alternative nano drugs. In this study, we used Mentha spicata for the synthesis of iron oxide nanoparticles using the green synthesis method. The synthesis of Fe2O3 NPs was confirmed through various characterizations. UV-Vis analysis detected a characteristic absorbance at the spectral range of 272 nm. The SEM micrographic analysis at various magnifications displayed circular or rod-shaped nanoparticles with a size ranging from 21 to 82 nm. The elemental EDX characterization showed intense peaks with a weight percent of 57, 34.93, and 8.07 for Fe, O, and, Cl respectively. TGA analysis showed that weight loss at 44-182, 500, and 660°C with no further modification indicates the thermal stability of iron oxide nanoparticles. FTIR spectrum of uncalined detects various bands at 3331, 1625, and 1,437 cm-1 for the hydroxyl group. After calcination two bands at 527 and 434 cm-1 were observed for Fe-O. The antimicrobial in vitro study showed maximum growth inhibition of Phytophthora infestans by the concentration of 100 µg ml-1 of Fe2O3-PE and Fe2O3 NPs. Therefore, this study resulted that bio-stable iron oxide nanoparticles can be used as alternative antimicrobial agents.

3.
Mol Biotechnol ; 63(7): 557-568, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33893996

ABSTRACT

Sugarcane (Saccharum officinarum), a sugar crop commonly grown for sugar production all over the world, is susceptible to several insect pests attack in addition to bacterial, fungal and viral infections leading to substantial reductions in its yield. The complex genetic makeup and lack of resistant genes in genome of sugarcane have made the conventional breeding a difficult and challenging task for breeders. Using pesticides for control of the attacking insects can harm beneficial insects, human and other animals and the environment as well. As alternative and effective strategy for control of insect pests, genetic engineering has been applied for overexpression of cry proteins, vegetative insecticidal proteins (vip), lectins and proteinase inhibitors (PI). In addition, the latest biotechnological tools such as host-induced gene silencing (HIGS) and CRISPR/Cas9 can be employed for sustainable control of insect pests in sugarcane. In this review overexpression of the cry, vip, lectins and PI genes in transgenic sugarcane and their disease resistance potential is described.


Subject(s)
Disease Resistance , Genetic Engineering/methods , Insecticides/metabolism , Saccharum/growth & development , CRISPR-Cas Systems , Lectins/genetics , Lectins/metabolism , Plant Breeding , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/parasitology , Saccharum/genetics , Saccharum/parasitology
4.
J Ayub Med Coll Abbottabad ; 32(1): 124-126, 2020.
Article in English | MEDLINE | ID: mdl-32468770

ABSTRACT

Behcet's disease (BD) presents as uncommon inflammatory disorder involving multiple systems, identified by longstanding relapsing path. Its chief manifestations are oral and genital ulcers together with involvement of the eyes, skin and joints. Neurological and vascular complications are significant. We report a case of a twenty-four years old young male who presented with headache, fever, and vomiting along with decreased vision; and repeated oral and genital ulcers. Diagnosis of BD complicated with cerebral venous thrombosis (CVT) was made. He was treated with corticosteroids, immunosuppression therapy and colchicine along with anticoagulation therapy. He responded well to the given treatment. Cerebral venous thrombosis complications in with BD can lead to serious consequences. Early recognition and treatment may lessen poor outcomes.


Subject(s)
Behcet Syndrome , Intracranial Thrombosis , Adult , Behcet Syndrome/complications , Behcet Syndrome/diagnosis , Humans , Intracranial Thrombosis/diagnosis , Intracranial Thrombosis/etiology , Male , Young Adult
5.
Mol Biotechnol ; 62(1): 1-7, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31538309

ABSTRACT

Introduction of more than one gene into crop plants simultaneously or sequentially, called transgene stacking, has been a more effective strategy for conferring higher and durable insect and disease resistance in transgenic plants than single-gene technology. Transgenes can be stacked against one or more pathogens or for traits such as herbicide tolerance or anthocyanin pigmentation. Polygenic agronomic traits can be improved by multiple gene transformation. The most widely engineered stacked traits are insect resistance and herbicide tolerance as these traits may lead to lesser use of pesticides, higher yield, and efficient control of weeds. In this review, we summarize transgene stacking of two or more transgenes into crops for different agronomic traits, potential applications of gene stacking, its limitations and future prospects.


Subject(s)
Crops, Agricultural/genetics , Disease Resistance/genetics , Plants, Genetically Modified/genetics , Transgenes , Animals , Herbicides/pharmacology , Herbicides/toxicity , Insecta/growth & development , Insecta/pathogenicity , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/microbiology , Plants, Genetically Modified/parasitology , Transformation, Genetic
6.
Sci Rep ; 9(1): 10202, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31308407

ABSTRACT

Visible light active g-C3N4(0.94)/CeO2(0.05)/Fe3O4(0.01) ternary composite nanosheets were fabricated by facile co-precipitation routes. The density functional theory (DFT) computations investigated changes in geometry and electronic character of g-C3N4 with CeO2 and Fe3O4 addition. Chemical and surface characterizations were explored with XRD, XPS, SEM, TEM, PL, DRS and Raman measurements. DRS and PL spectroscopy evidenced the energy band gap tailoring from 2.68 eV for bulk g-C3N4 and 2.92 eV for CeO2 to 2.45 eV for the ternary nanocomposite. Efficient electron/hole pair separation, increase in red-ox species and high exploitation of solar spectrum due to band gap tailoring lead to higher degradation efficiency of g-C3N4(0.94)/CeO2(0.05)/Fe3O4(0.01). Superior sun light photocatalytic breakdown of 2-Chlorophenol was observed with g-C3N4 having CeO2 loading up to 5 wt%. In case of ternary nanocomposites deposition of 1 wt% Fe3O4 over g-C3N4/CeO2 binary composite not only showed increment in visible light catalysis as predicted by the DFT studies, but also facilitated magnetic recovery. The g-C3N4(0.94)/CeO2(0.05)/Fe3O4(0.01) nanosheets showed complete mineralization of 25 mg.L-1 2-CP(aq) within 180 min exposure to visible portion of sun light and retained its high activity for 3 consecutive reuse cycles. The free radical scavenging showed superoxide ions and holes played a significant role compared to hydroxyl free radicals while chromatographic studies helped establish the 2-CP degradation mechanism. The kinetics investigations revealed 2.55 and 4.04 times increased rate of reactions compared to pristine Fe3O4 and CeO2, showing highest rate constant value of 18.2 × 10-3 min-1 for the ternary nanocomposite. We present very persuasive results that can be beneficial for exploration of further potential of g-C3N4(0.94)/CeO2(0.05)/Fe3O4(0.01) in advance wastewater treatment systems.

7.
3 Biotech ; 9(5): 192, 2019 May.
Article in English | MEDLINE | ID: mdl-31065492

ABSTRACT

Natural antimicrobial peptides have been shown as one of the important tools to combat certain pathogens and play important role as a part of innate immune system in plants and, also adaptive immunity in animals. Defensin is one of the antimicrobial peptides with a diverse nature of mechanism against different pathogens like viruses, bacteria and fungi. They have a broad function in humans, vertebrates, invertebrates, insects, and plants. Plant defensins primarily interact with membrane lipids for their biological activity. Several antimicrobial peptides (AMPs) have been overexpressed in plants for enhanced disease protection. The plants defensin peptides have been efficiently employed as an effective strategy for control of diseases in plants. They can be successfully integrated in plants genome along with some other peptide genes in order to produce transgenic crops for enhanced disease resistance. This review summarizes plant defensins, their expression in plants and enhanced disease resistance potential against phytopathogens.

8.
Sci Total Environ ; 671: 696-704, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-30939322

ABSTRACT

Aim of present work was to assess in-planta association potential of isolated endophytic bacterial strain Pseudomonas sp. (J10) (KY608252) with two cultivars of Lolium perenne L. (small & jumbo) and Arabidopsis thaliana L. for total petroleum hydrocarbon (TPH) degradation, alkane monooxygenase (alkb) gene expression and phytotoxicity analysis. A plant-microbe phytoremediation system was established to investigate the bacteria's ability to colonize the plant body and quantification of alkb gene to help withstand TPH stress in soil as well as in hydroponics. A real-time PCR method was developed to analyze bacterial colonization and survival within the plant body. Analysis revealed that J10 efficiently colonized all the tested plant species and expressed alkb gene under hydrocarbon stress ranging between 3.7 × 102-3.9 × 106 in A. thaliana and L. perenne (small), respectively. The colonization was more pronounced in soil as compared to hydroponic system. J10 inoculation reduced phytotoxicity and suggested that inoculation had a positive effect on plant growth under stress conditions as compared to control. L. perenne (small) showed significant TPH removal efficiency (45.6%) followed by L. perenne jumbo (24.5%) and A. thaliana (6.2%). In hydroponics, L. perenne (small) degraded about 28.2% TPH followed by L. perenne (jumbo) as 24.4%. Potential of the indigenously isolated plant endophytes may be exploited further for phytoremediation efficiency and industrial applications.


Subject(s)
Biodegradation, Environmental , Lolium/microbiology , Petroleum/metabolism , Soil Pollutants/metabolism , Hydrocarbons/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Plant Development , Pseudomonas/physiology
9.
Sci Total Environ ; 665: 668-677, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30776639

ABSTRACT

The present study for the first time reports facile in-situ room temperature synthesis of butterfly cluster like lamellar BiOBr deposited over TiO2 nanoparticles for photocatalytic breakdown of ciprofloxacin (CIP). The butterfly cluster arrangement of BiOBr resulted in an increase in surface area from 124.6 to 160.797 m2·g-1 and subsequently increased incident light absorption by the composite photocatalyst. The XRD indicated the existence of TiO2 as spherical ≈10-15 nm diameter particles with [101] preferential growth planes of anatase phase while the lamellar BiOBr showing growth along [110] and [102] preferential planes that were also confirmed by the HR-TEM images. DRS data implicated 2.76 eV as the energy band gap of the synthesized nanocomposite while PL spectroscopic analysis predicted it to be 2.81 eV. XPS measurements examined the chemical oxidation states of the constituents among the nanocomposite samples. The lameller structure of BiOBr in 15%BiOBr/TiO2 acts as a manifold promoting both visible light (λ > 420 nm) and direct sunlight catalytic degradation of 25 mg·L-1 aqueous CIP up to 92.5% and 100%, respectively within 150 min. The rate constant values suggested that the visible light photocatalysis of CIP with 15%BiOBr/TiO2 was 5.2 and 9.4 times faster compared to pristine TiO2 and BiOBr, respectively. The free radical scavenging study demonstrated that although photogenerated superoxide ions and holes contribute to the overall photocatalytic activity, yet, hydroxyl radicals predominantly control the CIP oxidation. The synthesized nanocomposite was re-used up to five cycles and retained 82.98% efficiency even after 5th use cycle showing a decline of only 12%. The catalyst stability and easy recovery adds to its reusability and value of the photocatalytic process.


Subject(s)
Bismuth/chemistry , Ciprofloxacin/analysis , Nanocomposites/chemistry , Photolysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Anti-Bacterial Agents/analysis , Sunlight
10.
3 Biotech ; 9(1): 35, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30622873

ABSTRACT

Thirteen (13) endophytic bacterial strains were isolated from Echinochloa crus-galli (Cockspur grass) and Cynodon dactylon (Bermuda grass) growing in an oil-contaminated site at a petroleum storage and transportation facility. Of the 13 strains assessed for their potential to degrade monoaromatic compounds (phenol, toluene, and xylene) and diesel and for their plant growth promoting (PGP) ability (phosphate solubilization, siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase production), isolate J10 (identified as Pseudomonas sp. by 16S rRNA gene sequencing) was found to the best diesel biodegrader with the best PGP traits. The Monod model used for Pseudomonas sp. J10 growth kinetics on diesel fuel as the sole carbon source showed that the maximum specific bacterial growth rate was 0.0644 h- 1 and the half velocity constant (K s ) was estimated as 4570 mg L- 1. The overall growth yield coefficient and apparent growth yield were determined to be 0.271 g h- 1 and 0.127 g cells/g substrate, respectively. Pseudomonas sp. J10 removed 69% diesel in four days as determined by gas chromatographic (GC) analysis. These findings could assist in developing an endophyte assisted efficient diesel biodegradation system using Pseudomonas sp. J10 isolated from Echinochloa crus-galli.

11.
Environ Technol ; 39(13): 1705-1714, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28562230

ABSTRACT

The presence of benzene and phenol in the environment can lead to serious health effects in humans and warrant development of efficient cleanup strategies. The aim of the present work was to assess the potential of indigenous endophytic bacterial strains to degrade benzene and phenol. Seven strains were successfully isolated from Cannabis sativa plants irrigated with oil refinery wastewater. Molecular characterization was performed by 16S rRNA gene sequencing. Phenol was biodegraded almost completely with Achromobacter sp. (AIEB-7), Pseudomonas sp. (AIEB-4), and Alcaligenes sp. (AIEB-6) at 250, 500, and 750 mg L-1; however, the degradation was only 81%, 72%, and 69%, respectively, when exposed to 1000 mg L-1. Bacillus sp. (AIEB-1), Enterobacter sp. (AIEB-3), and Acinetobacter sp. (AIEB-2) degraded benzene significantly at 250, 500, and 750 mg L-1. However, these strains showed 80%, 72%, and 68% benzene removal at 1000 mg L-1 exposure, respectively. Rates of degradation could be modeled with first-order kinetics with rate constant values of 1.86 × 10-2 for Pseudomonas sp. (AIEB-4) and 1.80 × 10-2 h-1 for Bacillus sp. (AIEB-1) and half-lives of 1.5 and 1.6 days, respectively. These results establish a foundation for further testing of the phytoremediation of hydrocarbon-contaminated soils in the presence of these endophytic bacteria.


Subject(s)
Benzene/chemistry , Biodegradation, Environmental , Cannabis , Phenol/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL