Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Sci Rep ; 14(1): 1885, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253648

ABSTRACT

In recent years, there have been an attempt to develop safe and environmental friendly solvents to replace conventional solvents, and use for extraction bioactive compounds from natural sources. A current investigation involved the preparation of green, methanolic, and ultrasonic extracts of S. sclarea, and compared their phenolic profiling using HPLC-DAD, antibacterial, antioxidant, and enzyme inhibition activities. The HPLC-DAD analysis revealed that Rosmarinic acid was the main content in all extracts, with Ellagic acid only present in the green extract. The green extract exhibited superior anti-biofilm activity against S. Aureus and E. Faecalis compared to the other extracts at MIC concentration. Furthermore, the green extract also displayed the highest inhibition of swarming motility in P. Aeruginosa with inhibition range 68.0 ± 2.1 (MIC) to 19.5 ± 0.6 (MIC/4). and better enzyme inhibitory activity against BChE (with IC50 = 131.6 ± 0.98 µg/mL) and AChE (with inhibition 47.00 ± 1.50%) compared to the other extracts; while, the ultrasonic extract showed strong inhibition of violacein production by C. Violaceum with a inhibition range 05.5 ± 0.1 (MIC/32) to 100 ± 0.00 (MIC), followed by the green extract with a inhibition range 15.0 ± 0.5 (MIC/8) to 100 ± 0.00 (MIC), additionally, the ultrasonic and methanoic extracts showed significant activity against urease enzyme with (IC50 = 171.6 ± 0.95 µg/mL and IC5 0 = 187.5 ± 1.32 µg/mL) respectively. Both the green and methanolic extracts showed considerable antioxidant activities, as ß-carotene-linoleic acid (IC50 = 5.61 ± 0.47 µg/mL and 5.37 ± 0.27 µg/mL), DPPH· (IC50 = 19.20 ± 0.70 µg/mL and 16.31 ± 0.23 µg/mL), ABTS·+(IC50 = 8.64 ± 0.63 µg/mL and 6.50 ± 0.45 µg/mL) and CUPRAC (A0.5 = 17.22 ± 0.36 µg/mL and 12.28 ± 0.12 µg/mL) respectively, likewise the green extract performing better in metal chelating compared to the other extracts. The green extraction is reported as a cost effective and solvent free method for extracting natural products that produces compounds free of toxic chemicals. This could be the method to be used in the industries as a renewable method.


Subject(s)
Salvia , Antioxidants/pharmacology , Methanol , Phenols/pharmacology , Plant Extracts/pharmacology , Solvents , Staphylococcus aureus
2.
Appl Microbiol Biotechnol ; 108(1): 139, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229401

ABSTRACT

Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.


Subject(s)
Bacillus licheniformis , Intestinal Diseases , Probiotics , Animals , Mice , Cattle , Anti-Bacterial Agents/pharmacology , Dietary Supplements , Probiotics/pharmacology , Intestinal Diseases/microbiology , Firmicutes/genetics , Cephalexin
4.
Int J Biol Macromol ; 254(Pt 2): 127808, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926310

ABSTRACT

Gut microbiota and their metabolic processes depend on the intricate interplay of gut microbiota and their metabolic processes. Bacillus licheniformis, a beneficial food supplement, has shown promising effects on stabilizing gut microbiota and metabolites. However, the precise mechanisms underlying these effects remain elusive. In this study, we investigated the impact of polysaccharide-producing B. licheniformis as a dietary supplement on the gut microbiome and metabolites through a combination of scanning electron microscopy (SEM), histological analysis, high-throughput sequencing (HTS), and metabolomics. Our findings revealed that the B. licheniformis-treated group exhibited significantly increased jejunal goblet cells. Moreover, gut microbial diversity was lower in the treatment group as compared to the control, accompanied by noteworthy shifts in the abundance of specific bacterial taxa. Enrichment of Firmicutes, Lachnospiraceae, and Clostridiales_bacterium contrasted with reduced levels of Campylobacterota, Proteobacteria, Parasutterella, and Helicobacter. Notably, the treatment group showed significant weight gain after 33 days, emphasizing the polysaccharide's impact on host metabolism. Delving into gut metabolomics, we discovered significant alterations in metabolites. Nine metabolites, including olprinone, pyruvic acid, and 2-methyl-3-oxopropanoate, were upregulated, while eleven, including defoslimod and voclosporin were down-regulated, shedding light on phenylpropanoid biosynthesis, tricarboxylic acid cycle (TCA cycle), and the glucagon signaling pathway. This comprehensive multi-omics analysis offers compelling insights into the potential of B. licheniformis as a dietary polysaccharide supplement for gut health and host metabolism, promising significant implications for gut-related issues.


Subject(s)
Bacillus licheniformis , Gastrointestinal Microbiome , Animals , Cattle , Multiomics , Tibet , Metabolomics , Dietary Supplements , Bacteria , Polysaccharides/pharmacology , RNA, Ribosomal, 16S
5.
Animals (Basel) ; 13(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38136788

ABSTRACT

Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-ß (TGF-ß), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.

6.
Ecotoxicol Environ Saf ; 268: 115689, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37992645

ABSTRACT

Avian tibial dyschondroplasia (TD) is a skeletal disease affecting fast growing chickens, resulting in non-mineralized avascular cartilage. This metabolic disorder is characterized by lameness and reduced growth performance causing economic losses. The aim of this study was to investigate the protective effects of baicalin against TD caused by thiram exposure. A total of two hundred and forty (n = 240) one day-old broiler chickens were uniformly and randomly allocated into three different groups (n = 80) viz. control, TD, and baicalin groups. All chickens received standard feed, however, to induce TD, the TD and baicalin groups received thiram (tetramethylthiuram disulfide) at a rate of 50 mg/kg feed from days 4-7. The thiram induction in TD and baicalin groups resulted in lameness, high mortality, and enlarged growth-plate, poor production performance, reduction in ALP, GSH-Px, SOD, and T-AOC levels, and increased AST and ALT, and MDA levels. Furthermore, histopathological results showed less vascularization, and mRNA and protein expression levels of Sox-9, Col-II, and Bcl-2 showed significant downward trend, while caspase-9 displayed significant up-regulation in TD-affected chickens. After the TD induction, the baicalin group was orally administered with baicalin at a rate of 200 mg/kg from days 8-18. Baicalin administration increased the vascularization, and chondrocytes with intact nuclei, alleviated lameness, decreased GP size, increased productive capacity, and restored the liver antioxidant enzymes and serum biochemical levels. Furthermore, baicalin significantly up-regulated the gene and protein expressions of Sox-9, Col-II, and Bcl-2, and significantly down-regulated the expression of caspase-9 (p < 0.05). Therefore, the obtained results suggest that baicalin could be a possible choice in thiram toxicity alleviation by regulating apoptosis and chondrocyte proliferation in thiram-induced tibial dyschondroplasia.


Subject(s)
Osteochondrodysplasias , Thiram , Animals , Thiram/toxicity , Osteochondrodysplasias/chemically induced , Osteochondrodysplasias/genetics , Chickens , Chondrocytes/pathology , Caspase 9/genetics , Lameness, Animal , Apoptosis , Neovascularization, Pathologic/chemically induced , Cell Proliferation
7.
Article in English | MEDLINE | ID: mdl-37740881

ABSTRACT

The gut microbiota is the largest and most complex ecosystem consisting of trillions of microorganisms, which influenced by various external factors. As an important probiotic species, Lactobacillus helps to improve gut microbial diversity and composition, underlying potential efficacy in growth performance and disease prevention. However, limited studies have been investigated the relationship between Lactobacillus sakei and intestinal health in dogs. In this study, dogs in the two groups were fed a standard diet (group C, n = 8) and Lactobacillus sakei diet (group P, n = 8), respectively. The growth performance, serum biochemical indices, antioxidant capacity, gut microbiota, and metabolism of dogs in both groups were studied. Results from growth trials showed that L. sakei can significantly improve the growth performance of dogs, including increased weight gain (p < 0.05), serum biochemical indices, i.e., ALP, TP, and ALB (p < 0.05), and better antioxidant capacity, i.e., SOD and GSH-Px (p < 0.05). Significant changes in the gut microbial composition were detected in dogs fed Lactobacillus sakei, as evidenced by an increase in the level of Firmicutes, Spirochaetota, and Patescibacteria, all of them play an important role in maintaining intestinal health. Moreover, a decrease in the level of microorganisms that threaten health, such as Mucispirillum and Clostridium_sensu_stricto_13. The metabolic analysis showed that the Lactobacillus sakei enhanced metabolic pathways such as vitamin B6 metabolism, glutathione metabolism, retinol metabolism, and fatty acid degradation. Our findings suggested that Lactobacillus sakei supplementation had beneficial effects on the growth performance and health status of dogs by improving gut microbiota balance and promoting metabolism. There are an estimated 200 million dogs in China, and the population is continuing to grow at a rapid pace. It is essential to explore an effective way to promote health in dogs. Intestinal diseases, particularly colitis and diarrhea, are common clinical conditions in dogs and are associated with gut microbiota. Lactobacillus sakei, as an important species of probiotics, the relationship between L. sakei and intestinal health in dogs remains unclear. Our study suggests that L. sakei significantly promotes growth performance and health states involving weight gain, regulation of gut microbiota, and metabolism. Overall, our findings shed light on the potential role of L. sakei as an alternative in promoting health in dogs.

8.
Int J Biol Macromol ; 251: 126312, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573920

ABSTRACT

Heavy metal contamination especially lead (Pb) causes a serious threat to global public health. In the current study, we explored the protective and regulating effects of Emblica officinalis polysaccharide (EOP) in the liver against Pb-induced toxicity. According to our findings, EOP decreased the Pb-induced pathological lesions of liver and overall weight index in mice (p < 0.05). Following treatment with EOP, the levels of biological biomarkers for liver hepatic function (i.e., ALT and AST) were significantly decreased (p < 0.01) in a dose-dependent manner, consisted with histopathological changes. The key proteins involved in hepatic oxidative stress and apoptosis, including Nrf2, HO-1, Bcl-2, and Bax were quantified, which indicated EOP as an effective approach in protecting against the liver injury. Moreover, EOP treatment ameliorated the negative changes of liver metabolic profile (i.e., metabolites concentrations and metabolic patterns). In conclusion, EOP could protect the liver against oxidative stress and apoptosis induced by Pb poisoning, associated with the efficacy of ameliorating the negative changes in liver metabolic profile. Hence, the current findings recommend EOP as an efficient way for alleviating liver injury in lead poisoning.

9.
Microb Pathog ; 180: 106159, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37201636

ABSTRACT

Gastrointestinal (GI) disease is a common digestive tract disease effects health of millions of human globally each year, thus the role of intestinal microflora had been emphasized. Seaweed polysaccharides featured a wide range of pharmacological activities, such as antioxidant activity and pharmacological action, but whether they can alleviate the dysbiosis of gut microbial ecology caused by lipopolysaccharide (LPS) exposure has not been well conducted. In this study, we investigated the effects of different concentration of seaweed polysaccharides on LPS-induced intestinal disorder by using hematoxylin and eosin (H&E) staining and 16S rRNA high-throughput sequencing. Histopathological results indicated that the intestinal structure in the LPS-induced group was damaged. Furthermore, LPS exposure not only reduced the intestinal microbial diversity in mice but also induced considerable transformation in its composition, along with significant increase in pathogenic bacteria (Helicobacter, Citrobacter and Mucispirillum) and decrease in beneficial bacteria (Firmicutes, Lactobacillus, Akkermansia and Parabacteroides). Nonetheless, seaweed polysaccharides administration could recover the gut microbial dysbiosis and the loss of gut microbial diversity induced by LPS exposure. In summary, seaweed polysaccharides were effective against LPS-induced intestinal damage in mice via the modulation of intestinal microecology.


Subject(s)
Lipopolysaccharides , Seaweed , Mice , Humans , Animals , Lipopolysaccharides/pharmacology , Dysbiosis/chemically induced , Dysbiosis/drug therapy , RNA, Ribosomal, 16S/genetics , Polysaccharides/pharmacology , Bacteria , Vegetables
10.
Ecotoxicol Environ Saf ; 249: 114339, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36508825

ABSTRACT

Aflatoxin B1 (AFB1), the most harmful aflatoxins, is a frequent contamination in feed and food items, raising global concerns in animal production and human public health. Also, AFB1 induces oxidative stress, cytotoxicity, mutations, and DNA lesions through its metabolic transformation into aflatoxin B1-8,9-epoxide (AFBO) by cytochrome P450 (CYP450). Hedyotis diffusa (HD) is a traditional Chinese herbal medicine known for its multiple pharmacological activities, including antioxidant, anti-inflammatory, and immunomodulatory. Yet, the influence of HD on AFB1-induced liver injury in ducks is still unknown. Here, we investigated whether HD positively affects AFB1-induced liver injury in ducks. Results revealed that I) AFB1 caused significant changes in serum biochemical indices and decreased growth performance of ducks (such as ALT, AST, ALP, TP, ALB, final body weight, and body weight gain), whereas HD supplementation at 200 mg/kg mitigated these alterations. II) HD alleviated hepatic histopathological changes and liver index induced by AFB1 in ducks. III) HD significantly attenuated AFB1-induced oxidative stress, as measured by increased antioxidant enzyme activities such as SOD, GPx, and T-AOC and decreased MDA levels. Furthermore, HD reduced the level of AFB1-DNA adduct in duck liver. IV) HD significantly promoted the transcriptional expression of NF-E2-related nuclear factor 2 (Nrf2) and associated genes, including heme oxygenase 1 (HO-1), NAD(P)H dehydrogenase quinone 1 (NQO1), glutamate-cysteine ligase catalytic (GCLC). In conclusion, these results demonstrated that HD could activate the Nrf2 pathway in ducks to reduce the hepatotoxicity driven by AFB1. This finding also provides theoretical and data support for a deeper understanding of the toxic mechanisms of AFB1 and its prevention.


Subject(s)
Aflatoxin B1 , Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Hedyotis , Liver , NF-E2-Related Factor 2 , Animals , Humans , Aflatoxin B1/toxicity , Antioxidants/pharmacology , Antioxidants/therapeutic use , Body Weight , Ducks , Hedyotis/chemistry , Liver/drug effects , Liver/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Chemical and Drug Induced Liver Injury/therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
11.
Probiotics Antimicrob Proteins ; 15(3): 469-478, 2023 06.
Article in English | MEDLINE | ID: mdl-34651283

ABSTRACT

The aim of this study was to evaluate the antibacterial potential of lactic acid bacteria (Weissella confuse, Pediococcus acidilactici, and Ligilactobacillus equi) isolated from healthy equine in Wuhan against Salmonella Typhimurium CVCC542-induced mice model on intestinal microflora. In previous studies, these isolated strains showed good probiotic potentials in vitro. In this study, fifty healthy mice were randomly divided into five groups, the blank control group, the control group, the Pediococcus acidilactici group (1 × 108 CFU/day), the Ligilactobacillus equi group (1 × 108 CFU/day), and the Weissella confuse group (1 × 108 CFU/day). The body weight in control group and Weissella confuse group showed significant decreased (P < 0.05, P < 0.01), while Pediococcus acidilactici group and Ligilactobacillus equi group showed good recovering after treatments. The lowest diarrhea rate was shown in Ligilactobacillus equi group after treatment. In histopathology, Ligilactobacillus equi group showed the least structural damage in duodenum, and all probiotic treatment groups showed less damage in cecum. The sequence data and optical transform unit showed that Pediococcus acidilactici group and Ligilactobacillus equi group had higher number than control group, while the diversity data showed that the control group and Weissella confuse group had lower diversity in cecum. Microbial community analysis showed increased abundance of Firmicutes, Bacteroidetes, uncultured_bacterium_f_Muribaculaceae, and Lactobacillus in treatment groups, while potential microbes that can induce intestinal diseases such as Verrucomicrobia, Akkermansia, and Lachnospiraceae_NK4A136_group decreased in the treatment groups. In conclusion, lactic acid bacteria isolated from the healthy horses could alleviate the infection of Salmonella and regulate intestinal flora.


Subject(s)
Lactobacillales , Probiotics , Horses , Animals , Mice , Lactobacillus , Probiotics/pharmacology , Pediococcus , Salmonella typhimurium
12.
Sci Total Environ ; 856(Pt 1): 159089, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36174690

ABSTRACT

The widespread presence and accumulation of microplastics (MPs) in organisms has led to their recognition as a major global ecological issue. There is a lot of data on how MPs affect the physiology and behavior of aquatic species, but the effects of MPs on poultry are less understood. Therefore, we aimed to explore the adverse effects and mechanisms of MPs exposure to chicken health. Results indicated that MPs exposure decreased growth performance and antioxidant ability and impaired chickens' intestine, liver, kidney, and spleen. Additionally, the gut microbiota in chickens exposed to MPs showed a significant decrease in alpha diversity, accompanied by significant alternations in taxonomic compositions. Microbial taxonomic investigation indicated that exposure to MPs resulted in a significant increase in the relative proportions of 11 genera and a distinct decline in the relative percentages of 3 phyla and 52 genera. Among decreased bacterial taxa, 11 genera even couldn't be detected in the gut microbiota of chickens exposed to MPs. Metabolomics analysis indicated that 2561 (1190 up-regulated, 1371 down-regulated) differential metabolites were identified, mainly involved in 5 metabolic pathways, including D-amino acid metabolism, ABC transporters, vitamin digestion and absorption, mineral absorption, and histidine metabolism. Taken together, this study indicated that MPs exposure resulted in adverse health outcomes for chickens by disturbing gut microbial homeostasis and intestinal metabolism. This study also provided motivation for environmental agencies worldwide to regulate the application and disposal of plastic products and decrease environmental contamination.


Subject(s)
Gastrointestinal Microbiome , Microplastics , Animals , Plastics/toxicity , Chickens , Antioxidants/pharmacology , Homeostasis
13.
Article in English | MEDLINE | ID: mdl-36536234

ABSTRACT

The Tibetan livestock sector is now ailing from many infectious ailments brought on by harmful microorganisms. Therefore, this research aimed to assess the probiotic potential and safety of Bacillus amyloliquefaciens isolated from yaks in the Tibet area to provide upper-edge strain resources for probiotics development. The four strains isolated from the intestine of yaks had been identified as Bacillus amyloliquefaciens after the 16S rRNA sequence. The ethanol, bile salt, and acid tolerance revealed that the isolates had significant tolerance levels. The antibiotics susceptibility assay showed that the strains were sensitive to commonly used antibiotics, while the antibacterial assay prevented the isolates from outperforming five harmful bacteria in terms of antibacterial potency. Moreover, it was evident that strain BA5 had the strongest activity to scavenge hydroxyl radical and reduce power. According to the animal experiment, no apparent pathological change was observed in intestinal tissue sections. Furthermore, the strain had a positive effect on promoting the development of jejunal villi referred to its safety. Therefore, more research is required into the bacteriostatic and antioxidant capabilities of isolates in animal production.

14.
Front Oncol ; 12: 1037896, 2022.
Article in English | MEDLINE | ID: mdl-36505856

ABSTRACT

Glioblastoma is a high-grade aggressive neoplasm characterised by significant intra-tumoral spatial heterogeneity. Personalising therapy for this tumour requires non-invasive tools to visualise its heterogeneity to monitor treatment response on a regional level. To date, efforts to characterise glioblastoma's imaging features and heterogeneity have focussed on individual imaging biomarkers, or high-throughput radiomic approaches that consider a vast number of imaging variables across the tumour as a whole. Habitat imaging is a novel approach to cancer imaging that identifies tumour regions or 'habitats' based on shared imaging characteristics, usually defined using multiple imaging biomarkers. Habitat imaging reflects the evolution of imaging biomarkers and offers spatially preserved assessment of tumour physiological processes such perfusion and cellularity. This allows for regional assessment of treatment response to facilitate personalised therapy. In this review, we explore different methodologies to derive imaging habitats in glioblastoma, strategies to overcome its technical challenges, contrast experiences to other cancers, and describe potential clinical applications.

15.
Ecotoxicol Environ Saf ; 245: 114134, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36183428

ABSTRACT

Thiram is a dithiocarbamate pesticide widely used in agriculture as a fungicide for storing grains to prevent fungal diseases. However, its residues have threatened the safety of human beings and the stability of the ecosystem by causing different disease conditions, e.g., tibial dyschondroplasia (TD), which results in a substantial economic loss for the poultry industry. So, the research on TD has a great concern for the industry and the overall GDP of a country. In current study, we investigated whether different concentrations (300, 500, and 700 mg/kg) of sodium butyrate alleviated TD induced under acute thiram exposure by regulating osteogenic gene expression, promoting chondrocyte differentiation, and altering the gut microbial community. According to the findings, sodium butyrate restored clinical symptoms in broilers, improved growth performance, bone density, angiogenesis, and chondrocyte morphology and arrangement. It could activate the signal transduction of the Wnt/ß-catenin pathway, regulate the expression of GSK-3ß and ß-catenin, and further promote the production of osteogenic transcription factors Runx2 and OPN for restoration of lameness. In addition, the 16S rRNA sequencing revealed a significantly different community composition among the groups. The TD group increased the abundance of the harmful bacteria Proteobacteria, Subdoligranulum, and Erysipelatoclostridium. The sodium butyrate enriched many beneficial bacteria, such as Bacteroidetes, Verrucomicrobia, Faecalibacterium, Barnesiella, Rikenella, and Butyricicoccus, etc., especially at the concentration of 500 mg/kg. The mentioned concentration significantly limited the intestinal disorders under thiram exposure, and restored bone metabolism.


Subject(s)
Fungicides, Industrial , Gastrointestinal Microbiome , Osteochondrodysplasias , Pesticides , Poultry Diseases , Animals , Butyric Acid/toxicity , Chickens/genetics , Core Binding Factor Alpha 1 Subunit , Dysbiosis , Ecosystem , Fungicides, Industrial/toxicity , Glycogen Synthase Kinase 3 beta , Humans , Osteochondrodysplasias/chemically induced , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Pesticides/toxicity , Poultry Diseases/chemically induced , Poultry Diseases/drug therapy , Poultry Diseases/metabolism , RNA, Ribosomal, 16S/genetics , Thiram/toxicity , beta Catenin
16.
Animals (Basel) ; 12(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36009620

ABSTRACT

Tibial dyschondroplasia debilities apoptotic and inflammasomal conditions that can further destroy chondrocytes. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, e.g., interleukin-1ß (IL-1ß) and IL-18. Moreover, there is mounting evidence that many of the signaling molecules that govern programmed cell death also affect inflammasome activation in a cell-intrinsic way. During the last decade, apoptotic functions have been described for signaling molecules involving inflammatory responses and cell death pathways. Considering these exceptional developments in the knowledge of processes, this review gives a glimpse of the significance of these two pathways and their connected proteins in tibial dyschondroplasia. The current review deeply elaborates on the elevated level of signaling mediators of mitochondrial-mediated apoptosis and the inflammasome. Although investigating these pathways' mechanisms has made significant progress, this review identifies areas where more study is especially required. It might lead to developing innovative therapeutics for tibial dyschondroplasia and other associated bone disorders, e.g., osteoporosis and osteoarthritis, where apoptosis and inflammasome are the significant pathways.

17.
Microorganisms ; 10(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36013948

ABSTRACT

Q fever remains a neglected zoonosis in many developing countries including Pakistan. The causing agent Coxiella (C.) burnetii is resistant to environmental factors (such as drying, heat and many disinfectants), resulting in a long-lasting infection risk for both human and animals. As the infection is usually asymptomatic, it mostly remains undiagnosed in animals until and unless adverse pregnancy outcomes occur in a herd. In humans, the infection leads to severe endocarditis and vascular infection in chronic cases. Limited data are available on molecular epidemiology and evolution of this pathogen, especially in ruminants. Genomic studies will help speculating outbreak relationships in this scenario. Likewise, pathogenesis of C. burnetii needs to be explored by molecular studies. Awareness programs and ensuring pasteurization of the dairy milk before human consumption would help preventing Q fever zoonosis.

18.
Phytomedicine ; 104: 154296, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35809377

ABSTRACT

BACKGROUND: Apoptosis is thought to be involved in all processes, including normal cell cycle, immune system, atrophy, embryonic development, and chemical-induced cellular damage. However, if the normal apoptotic process fails, the results might be disastrous, e.g., chondrocytes damage in tibial dyschondroplasia (TD). TD is a worldwide issue in the poultry sector due to thiram toxicity. Thiram (Tetramethyl thiuram disulfide) is a dithiocarbamate pesticide and fungicide commonly used in horticulture to treat grains meant for seed protection and preservation. PURPOSE: According to prior studies, chlorogenic acid (CGA) is becoming essential for regulating apoptosis. But still, the specific role of CGA in chondrocyte cells remains unclear. The present study explored the molecular mechanism of CGA on chondrocytes' apoptosis with B-cell lymphoma 2 signaling under the effect of miR-460a. METHODS: An in vivo and in vitro study was performed according to our previously developed methodology. Flow cytometry, western blotting, reverse transcription-quantitative polymerase chain reaction, and immunofluorescence assay were used to investigate the involvement of apoptosis and inflammasome related pathways. RESULTS: The CGA decreased the apoptosis rate with the deactivation of miR-460a, accompanied by the activation of Bcl-2. The high expression of miR-460a reduced the cell viability of chondrocytes in vitro and in vivo, that led to the interleukin-1ß production. While the apoptotic executioners (caspase-3 and caspase-7) acted upstream in miR-460a overexpressing cells, and its depletion downgraded these executioners. The CGA administrated cells negatively regulated miR-460a expression and thus indicating the deactivation of the apoptotic and inflammasome related pathways. CONCLUSION: Chlorogenic acid had a negative effect on miR-460a, setting off specific feedback to regulate apoptotic and inflammasome pathways, which might be a key feature for chondrocytes' survival.


Subject(s)
MicroRNAs , Osteochondrodysplasias , Apoptosis , Caspase 3/metabolism , Caspase 7/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Chondrocytes , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Osteochondrodysplasias/chemically induced , Osteochondrodysplasias/drug therapy , Osteochondrodysplasias/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Thiram/adverse effects , Thiram/metabolism
19.
Exp Dermatol ; 31(11): 1800-1809, 2022 11.
Article in English | MEDLINE | ID: mdl-35851722

ABSTRACT

The physiology and pathology of the skin are influenced by daily oscillations driven by a master clock located in the brain, and peripheral clocks in individual cells. The pathogenesis of psoriasis is circadian-rhythmic, with flares of disease and symptoms such as itch typically being worse in the evening/night-time. Patients with psoriasis have changes in circadian oscillations of blood pressure and heart rate, supporting wider circadian disruption. In addition, shift work, a circadian misalignment challenge, is associated with psoriasis. These features may be due to underlying circadian control of key effector elements known to be relevant in psoriasis such as cell cycle, proliferation, apoptosis and inflammation. Indeed, peripheral clock pathology may lead to hyperproliferation of keratinocytes in the basal layers, insufficient apoptosis of differentiating keratinocytes in psoriatic epidermis, dysregulation of skin-resident and migratory immune cells and modulation of angiogenesis through circadian oscillation of vascular endothelial growth factor A (VEGF-A) in epidermal keratinocytes. Chronotherapeutic effects of topical steroids and topical vitamin D analogues have been reported, suggesting that knowledge of circadian phase may improve the efficacy, and therapeutic index of treatments for psoriasis. In this viewpoint essay, we review the current literature on circadian disruption in psoriasis. We explore the hypothesis that psoriasis is circadian-driven. We also suggest that investigation of the circadian components specific to psoriasis and that the in vitro investigation of circadian regulation of psoriasis will contribute to the development of a novel chronotherapeutic treatment strategy for personalised psoriasis management. We also propose that circadian oscillations of VEGF-A offer an opportunity to enhance the efficacy and tolerability of a novel anti-VEGF-A therapeutic approach, through the timed delivery of anti-VEGF-A drugs.


Subject(s)
Circadian Rhythm , Psoriasis , Humans , Vascular Endothelial Growth Factor A/metabolism , Chronotherapy , Psoriasis/metabolism , Skin/metabolism
20.
Microbiol Spectr ; 10(4): e0115522, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35771011

ABSTRACT

The gut microbiota and its metabolic activities are crucial for maintaining host homoeostasis and health, of which the role of probiotics has indeed been emphasized. The current study delves into the performance of probiotics as a beneficial managemental strategy, which further highlights their impact on growth performance, serologic investigation, gut microbiota, and metabolic profiling in yaks' calves. A field experiment was employed consisting of 2 by 3 factorial controls, including two development stages, namely, 21 and 42 days (about one and a half month), with three different feeding treatments. Results showed a positive impact of probiotic supplements on growth performance by approximately 3.16 kg (P < 0.01) compared with the blank control. Moreover, they had the potential to improve serum antioxidants and biochemical properties. We found that microorganisms that threaten health were enriched in the gut of the blank control with the depletion of beneficial bacteria, although all yaks were healthy. Additionally, the gut was colonized by a microbial succession that assembled into a more mature microbiome, driven by the probiotics strategy. The gut metabolic profiling was also changed significantly after the probiotic strategy, i.e., the concentrations of metabolites and the metabolic pattern, including enrichments in protein digestion and absorption, vitamin digestion and absorption, and biosynthesis of secondary metabolites. In summary, probiotics promoted gut microbiota/metabolites, developing precise interventions and achieving physiological benefits based on intestinal microecology. Hence, it is important to understand probiotic dietary changes to the gut microbiome, metabolome, and the host phenotype. IMPORTANCE The host microbiome is a composite of the trillion microorganisms colonizing host bodies. It can be impacted by various factors, including diet, environmental conditions, and physical activities. The yaks' calves have a pre-existing imbalance in the intestinal microbiota with an inadequate feeding strategy, resulting in poor growth performance, diarrhea, and other intestinal diseases. Hence, targeting gut microbiota might provide a new effective feeding strategy for enhancing performance and maintaining a healthy intestinal environment. Based on the current findings, milk replacer-based Lactobacillus feeding may improve growth performance and health in yaks' calves.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Probiotics , Animals , Cattle , Lactobacillus/physiology , Milk , Probiotics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...