Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Omega ; 8(13): 12372-12378, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37033827

ABSTRACT

The low-temperature sintering of (Bi0.5Na0.5)TiO3-based ceramics can be achieved by sintering aid CuO. Piezoelectric ceramics (1 - x)[0.90(Bi0.5Na0.5)TiO3 - 0.10SrTiO3] - xCuO (BNT-ST-Cu) with x = 0, 0.01, 0.02, 0.03, and 0.04 were prepared through the mixed oxide route. A tetragonal structure was indexed for the undoped sample. Its structure was found to be changed to a pseudocubic when Cu was added. For undoped Cu samples, the sintering temperature (T s) for sufficient densification was 1160 °C. However, T s was reduced to 1090-1120 °C for Cu-added specimens. Field emission scanning electron microscopy (FE-SEM) showed a uniform and dense grain morphology for all samples. The maximum dielectric constant temperature (T m) was decreased with the doping concentration of Cu and applied frequency. The strain was increased with Cu concentration and had the maximum value of 500 pm/V for the sample x = 0.02 with symmetric and slim strain loops.

2.
Environ Sci Pollut Res Int ; 28(8): 9050-9066, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33483933

ABSTRACT

The world's water supplies have been contaminated due to large effluents containing toxic pollutants such as dyes, heavy metals, surfactants, personal care products, pesticides, and pharmaceuticals from agricultural, industrial, and municipal resources into water streams. Water contamination and its treatment have emerged out as an escalating challenge globally. Extraordinary efforts have been made to overcome the challenges of wastewater treatment in recent years. Various techniques such as chemical methods like Fenton oxidation and electrochemical oxidation, physical procedures like adsorption and membrane filtration, and several biological techniques have been recognized for the treatment of wastewater. This review communicates insights into recent research developments in different treatment techniques and their applications to eradicate various water contaminants. Research gaps have also been identified regarding multiple strategies for understanding key aspects that are important to pilot-scale or large-scale systems. Based on this review, it can be determined that adsorption is a simple, sustainable, cost-effective, and environmental-friendly technique for wastewater treatment, among all other existing technologies. However, there is a need for further research and development, optimization, and practical implementation of the integrated process for a wide range of applications.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Purification , Adsorption , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis
3.
Nanomaterials (Basel) ; 10(10)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050365

ABSTRACT

We proposed an IR absorber hybrid nanoantenna comprise of two overlapping gold nanoparticles residing over larger a silica nanoparticle. A wet chemical route was employed to prepare the hybrid structure of nanoantenna. High-resolution transmission electron microscope was used to measure the size and morphology of the nanoantenna. The Hybrid nanoantenna was excited by electron beam to investigate the optical response over a large wavelength range using Electron Energy Loss Spectroscopy. The beam of the electron was focused and we measured the electron energy loss spectra at different point of interest, which confirmed the of Low Energy Surface Plasmon Politron resonances in the IR region. The optical response of the nanoantenna was simulated numerically by employing Electric Hertzian dipole using finite element method with frequency domain solver in CST Microwave Studio. We used the Electric Hertzian dipole approach for the first time to model the Electron Energy Loss Spectroscopy experiment. The Electron Energy Loss Spectroscopy experimental results with their numerically simulated values confirmed the plasmonic resonance at the interface of the two overlapped gold nanoparticles.

4.
Environ Technol ; 37(16): 2082-7, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26776601

ABSTRACT

The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.


Subject(s)
Biofuels , Fatty Acids/chemistry , Industrial Waste , Waste Disposal, Fluid/methods , Esterification , Kinetics , Plant Oils/chemistry
5.
Appl Biochem Biotechnol ; 178(5): 1042-52, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26637362

ABSTRACT

Water stress causes major agricultural loss throughout the world as survival of the crops remained under stress and loss in yield. Plants respond to drought stress by means of different adaptive mechanisms such as accumulation of osmoprotectants to counteract the water stress. Amino acid proline is known to occur widely in higher plants and normally accumulates in large quantities as an osmolyte in response to environmental stresses. Biochemical estimation of proline was done in the drought-affected wheat genotypes by spectrophotometric method. Proline promoted a positive effect as root/shoot ratio was enhanced in wheat germplasm under drought stress. SSR primer pairs (45) were tested for polymorphism among selected wheat genotypes. The dendrogram results have shown the wheat genotype association with the levels of proline during induced drought stress. The relationship between pattern of drought responsive biochemical attributes and DNA markers in the selected wheat genotypes was recognized to select drought tolerant genotypes for sowing in drought affected areas of the country.


Subject(s)
Droughts , Genetic Markers , Proline/metabolism , Stress, Physiological , Triticum/metabolism , DNA Fingerprinting , Genes, Plant , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...