Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 166: 112579, 2023 04.
Article in English | MEDLINE | ID: mdl-36914342

ABSTRACT

Gluten-free (GF) breads, based on rice flour and corn starch (50:50), were fortified with a mixture of acorn flour (ACF) - chickpea flour (CPF) at 30% substitution level of corn starch (i.e., rice flour:corn starch:ACF-CPF 50:20:30) using different flour blends of ACF:CPF at weight ratios of 5:25, 7.5:22.5, 12.5:17.5, and 20:10 in order to improve the nutritional quality and antioxidant potential as well as the glycemic responses of the GF breads; a control GF bread with rice flour:corn starch 50:50 ratio was also prepared. ACF was richer in total phenolic content than CPF, whereas CPF was characterized by higher amounts of total tocopherols and lutein compared to ACF. For both ACF and CPF as well as the fortified breads, the most abundant phenolic compounds were gallic (GA) and ellagic (ELLA) acids as found by HPLC-DAD analysis, while a hydrolysable tannin, valoneic acid dilactone, was also identified and quantified by HPLC-DAD-ESI-MS in high amount in the ACF-GF bread having the highest level of ACF (ACF:CPF 20:10), even though it seemed to decompose during breadmaking, possibly into GA and ELLA. Therefore, the inclusion of these two raw materials as ingredients in GF bread formulations resulted in baked products with enhanced concentrations of such bioactive compounds and higher antioxidant activities, as indicated by three different assays (DPPH, ABTS and FRAP). The extent of glucose release, as evaluated by an in vitro enzymic assay, was negatively correlated (r = -0.96; p = 0.005) with the level of added ACF, and was significantly reduced for all ACF-CPF fortified products when compared with their non-fortified GF counterpart. Furthermore, the GF bread containing a flour mixture of ACP:CPF at a weight ratio of 7.5:22.5, was subjected to an in vivo intervention protocol to assess the glycemic response when consumed by 12 healthy volunteers; in this case, white wheat bread was used as reference food. The glycemic index (GI) of the fortified bread was significantly lower compared to the control GF bread (97.4 versus 159.2, respectively), which along with its lower amount of available carbohydrates and the higher level of dietary fibers, resulted in a significantly reduced glycemic load (7.8 versus 18.8 g per serving of 30 g). The present findings underlined the effectiveness of acorn and chickpea flours in improving the nutritional quality and glycemic responses of fortified GF breads with these flours.


Subject(s)
Antioxidants , Cicer , Humans , Antioxidants/analysis , Bread/analysis , Glycemic Index , Starch/chemistry , Phenols/analysis
2.
J Chromatogr Sci ; 55(7): 690-696, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28334872

ABSTRACT

Aflatoxins, deoxynivalenol, ochratoxin A and zearalenone are the most important mycotoxins that everyone on its own, in groups or simultaneously contaminate cereals. The external layers of cereal grains (bran) apart from health promoting ingredients are also the most contaminated part with reference to mycotoxin's presence. Therefore, consumption of a high fiber wheat-based diet represent an increased risk to consumer's health. The objective of this study was to develop a simple and reliable high performance liquid chromatography method for the simultaneous determination of these mycotoxins in wheat bran (WB). A double extraction was applied with phosphate buffered saline/methanol and for the clean-up a multi-immunoaffinity column was utilized. The detection was carried out with diode-array and fluorescence detectors linked with a post-column photochemical reactor. After optimization of the chromatographic conditions, all mycotoxins were eluted within ~26 min. Limits of detection for each mycotoxin (0.12-12.58 µg/kg) were below the maximum levels provisioned by European Union regulations. Good linearity was observed for the analytes (r2 ≥ 0.9980). The recovery of analyzed mycotoxins ranged from 70.2 to 105.8%, with a relative standard deviation <12%. The method was successfully applied to quantify mycotoxins in 34 WB samples obtained after pearling of grains that were collected from different regions of Greece.


Subject(s)
Chromatography, High Pressure Liquid/methods , Dietary Fiber/analysis , Mycotoxins/analysis , Limit of Detection , Linear Models , Reproducibility of Results
3.
J Sep Sci ; 39(8): 1425-32, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26891772

ABSTRACT

A simple, sensitive and accurate analytical method was optimized and developed for the determination of deoxynivalenol and aflatoxins in cereals intended for human consumption using high-performance liquid chromatography with diode array and fluorescence detection and a photochemical reactor for enhanced detection. A response surface methodology, using a fractional central composite design, was carried out for optimization of the water percentage at the beginning of the run (X1, 80-90%), the level of acetonitrile at the end of gradient system (X2, 10-20%) with the water percentage fixed at 60%, and the flow rate (X3, 0.8-1.2 mL/min). The studied responses were the chromatographic peak area, the resolution factor and the time of analysis. Optimal chromatographic conditions were: X1 = 80%, X2 = 10%, and X3 = 1 mL/min. Following a double sample extraction with water and a mixture of methanol/water, mycotoxins were rapidly purified by an optimized solid-phase extraction protocol. The optimized method was further validated with respect to linearity (R(2) >0.9991), sensitivity, precision, and recovery (90-112%). The application to 23 commercial cereal samples from Greece showed contamination levels below the legally set limits, except for one maize sample. The main advantages of the developed method are the simplicity of operation and the low cost.


Subject(s)
Aflatoxins/analysis , Edible Grain/chemistry , Trichothecenes/analysis , Chromatography, High Pressure Liquid
4.
J Sep Sci ; 35(13): 1603-11, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22761138

ABSTRACT

An analytical method based on an optimized solid-phase extraction procedure and followed by high-performance liquid chromatography (HPLC) separation with diode array detection was developed and validated for the simultaneous determination of phenolic acids (gallic, protocatechuic, 4-hydroxy-benzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, sinapic, and cinnamic acids), flavanols (catechin and epicatechin), flavonols (myricetin, quercetin, kaempferol, quercetin-3-O-glucoside, hyperoside, and rutin), flavones (luteolin and apigenin) and flavanones (naringenin and hesperidin) in rice flour (Oryza sativa L.). Chromatographic separation was carried out on a PerfectSil Target ODS-3 (250 mm × 4.6 mm, 3 µm) column at temperature 25°C using a mobile phase, consisting of 0.5% (v/v) acetic acid in water, methanol, and acetonitrile at a flow rate 1 mL min(-1) , under gradient elution conditions. Application of optimum extraction conditions, elaborated on both Lichrolut C(18) and Oasis HLB cartridges, have led to extraction of phenolic acids and flavonoids from rice flour with mean recoveries 84.3-113.0%. The developed method was validated in terms of linearity, accuracy, precision, stability, and sensitivity. Repeatability (n = 5) and inter-day precision (n = 4) revealed relative standard deviation (RSD) <13%. The optimized method was successfully applied to the analysis of phenolic acids and flavonoids in pigmented (red and black rice) and non-pigmented rice (brown rice) samples.


Subject(s)
Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Hydroxybenzoates/analysis , Oryza/chemistry , Plant Extracts/analysis , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/instrumentation , Chromatography, Reverse-Phase/methods , Flavonoids/isolation & purification , Hydroxybenzoates/isolation & purification , Plant Extracts/isolation & purification
5.
J Agric Food Chem ; 60(9): 2076-82, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22324450

ABSTRACT

The separation and determination of tocopherols (Ts) and tocotrienols (T3s) by reversed-phase high-performance liquid chromatography with fluorescence detection has been developed and validated after optimization of various chromatographic conditions and other experimental parameters. Analytes were separated on a PerfectSil Target ODS-3 (250 × 4.6 mm, 3 µm) column filled with a novel sorbent material of ultrapure silica gel. The separation of Ts and T3s was optimized in terms of mobile-phase composition and column temperature on the basis of the best compromise among efficiency, resolution, and analysis time. Using a gradient elution of mobile phase composed of isopropanol/water and 7 °C column temperature, a satisfactory resolution was achieved within 62 min. For the quantitative determination, α-T acetate (50 µg/mL) was used as the internal standard. Detection limits ranged from 0.27 µg/mL (γ-T) to 0.76 µg/mL (γ-T3). The validation of the method was examined performing intraday (n = 5) and interday (n = 3) assays and was found to be satisfactory, with high accuracy and precision results. Solid-phase extraction provided high relative extraction recoveries from cereal samples: 87.0% for γ-T3 and 115.5% for δ-T. The method was successfully applied to cereals, such as durum wheat, bread wheat, rice, barley, oat, rye, and corn.


Subject(s)
Chromatography, High Pressure Liquid/methods , Edible Grain/chemistry , Tocopherols/isolation & purification , Tocotrienols/isolation & purification , Isomerism , Sensitivity and Specificity , Spectrometry, Fluorescence
6.
Food Chem ; 134(3): 1624-32, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-25005991

ABSTRACT

Whole cereal grains are a good source of phenolic acids associated with reduced risk of chronic diseases. This paper reports the development and validation of a high-performance liquid chromatography-diode array detection (HPLC-DAD) method for the determination of phenolic acids in cereals in either free or bound form. Extraction of free phenolic acids and clean-up was performed by an optimised solid-phase extraction (SPE) protocol on Oasis HLB cartridges using aqueous methanol as eluant. The mean recovery of analytes ranged between 84% and 106%. Bound phenolic acids were extracted using alkaline hydrolysis with mean recoveries of 80-95%, except for gallic acid, caffeic acid and protocatechuic acid. Both free and bound phenolic extracts were separated on a Nucleosil 100 C18 column, 5 µm (250 mm × 4.6 mm) thermostated at 30 °C, using a linear gradient elution system consisting of 1% (v/v) acetic acid in methanol. Method validation was performed by means of linearity, accuracy, intra-day and inter-day precision and sensitivity. Detection limits ranged between 0.13 and 0.18 µg/g. The method was applied to the analysis of free and bound phenolic acids contents in durum wheat, bread wheat, barley, oat, rice, rye, corn and triticale.


Subject(s)
Chromatography, High Pressure Liquid/methods , Edible Grain/chemistry , Hydroxybenzoates/chemistry , Solid Phase Extraction/methods
7.
J Sep Sci ; 34(12): 1375-82, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21506271

ABSTRACT

The increasing interest in antioxidant properties of cereal and cereal-based products has prompted the development of a simple and reliable HPLC method for the simultaneous determination of important phytochemicals like tocopherols (T), tocotrienols (T3) and carotenoids. Separation was carried out on a Nucleosil 100 C(18) column, 5 µm (250 mm × 4.6 mm) thermostated at 25 °C, using a linear gradient elution system starting with methanol and ending with a mixture of methanol-isopropanol-acetonitrile. All separated compounds including the internal standard (α-tocopherol acetate) were eluted within 16 min and detected by dual detection: fluorescence for tocopherols and tocotrienols at 290 nm excitation and 320 nm emission and UV-vis photodiode array detection for lutein and ß-carotene at 450 nm. Detection limits ranged from 0.2 µg/g (ß-carotene) to 1.60 µg/g (α-tocopherol). The intra- and inter-assay coefficients of variation were calculated by using cereals with different levels of lipophilic antioxidants. The extraction method involved sample saponification and clean-up by solid-phase extraction (SPE). The extraction recoveries obtained using OASIS HLB SPE cartridges and dichloromethane as eluent were in the range of 90.2-110.1%, with RSD lower than 10%. The method was successfully applied to cereals: durum wheat, bread wheat, rice, barley, oat, rye, corn and triticale.


Subject(s)
Carotenoids/analysis , Chromatography, High Pressure Liquid/methods , Edible Grain/chemistry , Tocopherols/analysis , Tocotrienols/analysis , Antioxidants/analysis , Antioxidants/isolation & purification , Carotenoids/isolation & purification , Limit of Detection , Solid Phase Extraction , Tocopherols/isolation & purification , Tocotrienols/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...