Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 110: 117830, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38981216

ABSTRACT

Cyclic peptides are attracting attention as therapeutic agents due to their potential for oral absorption and easy access to tough intracellular targets. LUNA18, a clinical KRAS inhibitor, was transformed-without scaffold hopping-from the initial hit by using an mRNA display library that met our criteria for drug-likeness. In drug discovery using mRNA display libraries, hit compounds always possess a site linked to an mRNA tag. Here, we describe our examination of the Structure-Activity Relationship (SAR) using X-ray structures for chemical optimization near the site linked to the mRNA tag, equivalent to the C-terminus. Structural modifications near the C-terminus demonstrated a relatively wide range of tolerance for side chains. Furthermore, we show that a single atom modification is enough to change the pharmacokinetic (PK) profile. Since there are four positions where side chain modification is permissible in terms of activity, it is possible to flexibly adjust the pharmacokinetic profile by structurally optimizing the side chain. The side chain transformation findings demonstrated here may be generally applicable to hits obtained from mRNA display libraries.


Subject(s)
Peptides, Cyclic , Proto-Oncogene Proteins p21(ras) , RNA, Messenger , Structure-Activity Relationship , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacokinetics , Humans , RNA, Messenger/metabolism , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Molecular Structure , Animals , Dose-Response Relationship, Drug
2.
Nat Commun ; 14(1): 8502, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38135691

ABSTRACT

In human celiac disease (CeD) HLA-DQ2.5 presents gluten peptides to antigen-specific CD4+ T cells, thereby instigating immune activation and enteropathy. Targeting HLA-DQ2.5 with neutralizing antibody for treating CeD may be plausible, yet using pan-HLA-DQ antibody risks affecting systemic immunity, while targeting selected gluten peptide:HLA-DQ2.5 complex (pHLA-DQ2.5) may be insufficient. Here we generate a TCR-like, neutralizing antibody (DONQ52) that broadly recognizes more than twenty-five distinct gluten pHLA-DQ2.5 through rabbit immunization with multi-epitope gluten pHLA-DQ2.5 and multidimensional optimization. Structural analyses show that the proline-rich and glutamine-rich motif of gluten epitopes critical for pathogenesis is flexibly recognized by multiple tyrosine residues present in the antibody paratope, implicating the mechanisms for the broad reactivity. In HLA-DQ2.5 transgenic mice, DONQ52 demonstrates favorable pharmacokinetics with high subcutaneous bioavailability, and blocks immunity to gluten while not affecting systemic immunity. Our results thus provide a rationale for clinical testing of DONQ52 in CeD.


Subject(s)
Celiac Disease , Glutens , Mice , Animals , Humans , Rabbits , Glutens/chemistry , Antibodies, Neutralizing , HLA-DQ Antigens , Peptides/chemistry , Epitopes/chemistry , Mice, Transgenic
3.
J Am Chem Soc ; 145(44): 24035-24051, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37874670

ABSTRACT

Establishing a technological platform for creating clinical compounds inhibiting intracellular protein-protein interactions (PPIs) can open the door to many valuable drugs. Although small molecules and antibodies are mainstream modalities, they are not suitable for a target protein that lacks a deep cavity for a small molecule to bind or a protein found in intracellular space out of an antibody's reach. One possible approach to access these targets is to utilize so-called middle-size cyclic peptides (defined here as those with a molecular weight of 1000-2000 g/mol). In this study, we validated a new methodology to create oral drugs beyond the rule of 5 for intracellular tough targets by elucidating structural features and physicochemical properties for drug-like cyclic peptides and developing library technologies to afford highly N-alkylated cyclic peptide hits. We discovered a KRAS inhibitory clinical compound (LUNA18) as the first example of our platform technology.


Subject(s)
Peptides, Cyclic , Peptides, Cyclic/chemistry
4.
J Am Chem Soc ; 145(30): 16610-16620, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37463267

ABSTRACT

Cyclic peptides as a therapeutic modality are attracting a lot of attention due to their potential for oral absorption and accessibility to intracellular tough targets. Here, starting with a drug-like hit discovered using an mRNA display library, we describe a chemical optimization that led to the orally available clinical compound known as LUNA18, an 11-mer cyclic peptide inhibitor for the intracellular tough target RAS. The key findings are as follows: (i) two peptide side chains were identified that each increase RAS affinity over 10-fold; (ii) physico-chemical properties (PCP) including Clog P can be adjusted by side-chain modification to increase membrane permeability; (iii) restriction of cyclic peptide conformation works effectively to adjust PCP and improve bio-activity; (iv) cellular efficacy was observed in peptides with a permeability of around 0.4 × 10-6 cm/s or more in a Caco-2 permeability assay; and (v) while keeping the cyclic peptide's main-chain conformation, we found one example where the RAS protein structure was changed dramatically through induced-fit to our peptide side chain. This study demonstrates how the chemical optimization of bio-active peptides can be achieved without scaffold hopping, much like the processes for small molecule drug discovery that are guided by Lipinski's rule of five. Our approach provides a versatile new strategy for generating peptide drugs starting from drug-like hits.


Subject(s)
Peptides , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Caco-2 Cells , Peptides/pharmacology , Peptides/metabolism , Peptides, Cyclic/chemistry , Molecular Conformation
5.
Sci Rep ; 7(1): 1080, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28439081

ABSTRACT

Dysregulation of the complement system is linked to the pathogenesis of a variety of hematological disorders. Eculizumab, an anti-complement C5 monoclonal antibody, is the current standard of care for paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). However, because of high levels of C5 in plasma, eculizumab has to be administered biweekly by intravenous infusion. By applying recycling technology through pH-dependent binding to C5, we generated a novel humanized antibody against C5, SKY59, which has long-lasting neutralization of C5. In cynomolgus monkeys, SKY59 suppressed C5 function and complement activity for a significantly longer duration compared to a conventional antibody. Furthermore, epitope mapping by X-ray crystal structure analysis showed that a histidine cluster located on C5 is crucial for the pH-dependent interaction with SKY59. This indicates that the recycling effect of SKY59 is driven by a novel mechanism of interaction with its antigen and is distinct from other known pH-dependent antibodies. Finally, SKY59 showed neutralizing effect on C5 variant p.Arg885His, while eculizumab does not inhibit complement activity in patients carrying this mutation. Collectively, these results suggest that SKY59 is a promising new anti-C5 agent for patients with PNH and other complement-mediated disorders.


Subject(s)
Antibodies, Neutralizing/immunology , Complement C5/antagonists & inhibitors , Complement C5/immunology , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Complement C5/chemistry , Crystallography, X-Ray , Hemoglobinuria, Paroxysmal/drug therapy , Humans , Macaca fascicularis , Protein Binding , Protein Conformation
6.
Chem Pharm Bull (Tokyo) ; 64(11): 1622-1629, 2016.
Article in English | MEDLINE | ID: mdl-27803473

ABSTRACT

We have developed a method for converting a transforming growth factor-ß-activated kinase 1 (TAK1) type I inhibitor into a type II or c-helix-out inhibitor by structure-based drug design (SBDD) to achieve an effective strategy for developing these different types of kinase inhibitor in parallel. TAK1 plays a key role in inflammatory and immune signaling, and is therefore considered to be an attractive molecular target for the treatment of human diseases (inflammatory disease, cancer, etc.). We have already reported novel type I TAK1 inhibitor, so we utilized its X-ray information to design a new chemical class type II and c-helix-out inhibitors. To develop the type II inhibitor, we superimposed the X-ray structure of our reported type I inhibitor onto a type II compound that inhibits multiple kinases, and used SBDD to design a new type II inhibitor. For the TAK1 c-helix-out inhibitor, we utilized the X-ray structure of a b-Raf c-helix-out inhibitor to design compounds, because TAK1 is located close to b-Raf in the Sugen kinase tree, so we considered that TAK1 would, similarly to b-Raf, form a c-helix-out conformation. The X-ray crystal structure of the inhibitors in complex with TAK1 confirmed the binding modes of the compounds we designed. This report is notable for being the first discovery of a c-helix-out inhibitor against TAK1.


Subject(s)
Drug Design , MAP Kinase Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , MAP Kinase Kinase Kinases/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Structure, Secondary/drug effects , Structure-Activity Relationship
7.
Bioorg Med Chem ; 24(18): 4206-4217, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27448772

ABSTRACT

A novel thienopyrimidinone analog was discovered as a potent and highly selective TAK1 inhibitor using the SBDD approach. TAK1 plays a key role in inflammatory and immune signaling, so TAK1 is considered to be an attractive molecular target for the treatment of human diseases (inflammatory disease, cancer, etc.). After the hit compound had been obtained, our modifications successfully increased TAK1 inhibitory activity and solubility, but metabolic stability was still unsatisfactory. To improve metabolic stability, we conducted metabolic identification. Although the obtained metabolite was fortunately a potent TAK1 inhibitor, its kinase selectivity was low. Subsequently, to achieve high kinase selectivity, we used SBDD to follow two strategies: one targeting unique amino acid residues in TAK1, especially the combination of Ser111 and Asn114; the other decreasing the interaction with Tyr106 at the hinge position in TAK1. As expected, our designed compound showed an excellent kinase selectivity profile in both an in-house and a commercially available panel assay of over 420 kinases and also retained its potent TAK1 inhibitory activity (TAK1 IC50=11nM).


Subject(s)
MAP Kinase Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidinones/pharmacology , Thiophenes/pharmacology , Animals , Asparagine/chemistry , Crystallography, X-Ray , Drug Design , Enzyme Assays , Humans , Hydrogen Bonding , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Serine/chemistry , Solubility , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry , Tyrosine/chemistry
8.
Bioorg Med Chem Lett ; 22(24): 7486-9, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23122816

ABSTRACT

We conducted a high throughput screening for glyoxalase I (GLO1) inhibitors and identified 4,6-diphenyl-N-hydroxypyridone as a lead compound. Using a binding model of the lead and public X-ray coordinates of GLO1 enzymes complexed with glutathione analogues, we designed 4-(7-azaindole)-substituted 6-phenyl-N-hydroxypyridones. 7-Azaindole's 7-nitrogen was expected to interact with a water network, resulting in an interaction with the protein. We validated this inhibitor design by comparing its structure-activity relationship (SAR) with that of corresponding indole derivatives, by analyzing the binding mode with X-ray crystallography and by evaluating its thermodynamic binding parameters.


Subject(s)
Drug Design , Enzyme Inhibitors/pharmacology , Indoles/chemistry , Lactoylglutathione Lyase/antagonists & inhibitors , Pyridones/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Lactoylglutathione Lyase/metabolism , Models, Molecular , Molecular Structure , Pyridones/chemical synthesis , Pyridones/chemistry , Structure-Activity Relationship
9.
FEBS J ; 277(4): 1000-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20088880

ABSTRACT

gamma-Glutamyltranspeptidase (GGT; EC 2.3.2.2), an enzyme found in organisms from bacteria to mammals and plants, plays a central role in glutathione metabolism. Structural studies of GGTs from Escherichia coli and Helicobacter pylori have revealed detailed molecular mechanisms of catalysis and maturation. In these two GGTs, highly conserved residues form the catalytic pockets, conferring the ability of the loop segment to shield the bound gamma-glutamyl moiety from the solvent. Here, we have examined the Bacillus subtilis GGT, which apparently lacks the amino acids corresponding to the lid-loop that are present in mammalian and plant GGTs as well as in most bacterial GGTs. Another remarkable feature of B. subtilis GGT is its salt tolerance; it retains 86% of its activity even in 3 m NaCl. To better understand these characteristics of B. subtilis GGT, we determined its crystal structure in complex with glutamate, a product of the enzymatic reaction, at 1.95 A resolution. This structure revealed that, unlike the E. coli and H. pylori GGTs, the catalytic pocket of B. subtilis GGT has no segment that covers the bound glutamate; consequently, the glutamate is exposed to solvent. Furthermore, calculation of the electrostatic potential showed that strong acidic patches were distributed on the surface of the B. subtilis GGT, even under high-salt conditions, and this may allow the protein to remain in the hydrated state and avoid self-aggregation. The structural findings presented here have implications for the molecular mechanism of GGT.


Subject(s)
Bacillus subtilis/enzymology , Catalytic Domain , Glutamic Acid/chemistry , Models, Molecular , gamma-Glutamyltransferase/chemistry , Animals , Bacillus subtilis/drug effects , Catalysis , Crystallography, X-Ray , Escherichia coli , Humans , Protein Structure, Tertiary , Rats , Sodium Chloride/pharmacology , Solvents/chemistry , gamma-Glutamyltransferase/drug effects , gamma-Glutamyltransferase/genetics
10.
J Mol Biol ; 380(2): 361-72, 2008 Jul 04.
Article in English | MEDLINE | ID: mdl-18555071

ABSTRACT

gamma-Glutamyltranspeptidase (GGT) catalyzes the cleavage of such gamma-glutamyl compounds as glutathione, and the transfer of their gamma-glutamyl group to water or to other amino acids and peptides. GGT is involved in a number of biological phenomena such as drug resistance and metastasis of cancer cells by detoxification of xenobiotics. Azaserine and acivicin are classical and irreversible inhibitors of GGT, but their binding sites and the inhibition mechanisms remain to be defined. We have determined the crystal structures of GGT from Escherichia coli in complex with azaserine and acivicin at 1.65 A resolution. Both inhibitors are bound to GGT at its substrate-binding pocket in a manner similar to that observed previously with the gamma-glutamyl-enzyme intermediate. They form a covalent bond with the O(gamma) atom of Thr391, the catalytic residue of GGT. Their alpha-carboxy and alpha-amino groups are recognized by extensive hydrogen bonding and charge interactions with the residues that are conserved among GGT orthologs. The two amido nitrogen atoms of Gly483 and Gly484, which form the oxyanion hole, interact with the inhibitors directly or via a water molecule. Notably, in the azaserine complex the carbon atom that forms a covalent bond with Thr391 is sp(3)-hybridized, suggesting that the carbonyl of azaserine is attacked by Thr391 to form a tetrahedral intermediate, which is stabilized by the oxyanion hole. Furthermore, when acivicin is bound to GGT, a migration of the single and double bonds occurs in its dihydroisoxazole ring. The structural characteristics presented here imply that the unprecedented binding modes of azaserine and acivicin are conserved in all GGTs from bacteria to mammals and give a new insight into the inhibition mechanism of glutamine amidotransferases by these glutamine antagonists.


Subject(s)
Azaserine , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/chemistry , Glutamine/antagonists & inhibitors , Isoxazoles , gamma-Glutamyltransferase/antagonists & inhibitors , gamma-Glutamyltransferase/chemistry , Amino Acid Sequence , Animals , Azaserine/chemistry , Azaserine/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Isoxazoles/chemistry , Isoxazoles/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Sequence Alignment , gamma-Glutamyltransferase/genetics , gamma-Glutamyltransferase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL