Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5100, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937434

ABSTRACT

Hydrogen bond symmetrisation is the phenomenon where a hydrogen atom is located at the centre of a hydrogen bond. Theoretical studies predict that hydrogen bonds in ice VII eventually undergo symmetrisation upon increasing pressure, involving nuclear quantum effect with significant isotope effect and drastic changes in the elastic properties through several intermediate states with varying hydrogen distribution. Despite numerous experimental studies conducted, the location of hydrogen and hence the transition pressures reported up to date remain inconsistent. Here we report the atomic distribution of deuterium in D2O ice using neutron diffraction above 100 GPa and observe the transition from a bimodal to a unimodal distribution of deuterium at around 80 GPa. At the transition pressure, a significant narrowing of the peak widths of 110 is also observed, attributed to the structural relaxation by the change of elastic properties.

2.
Proc Natl Acad Sci U S A ; 121(14): e2318978121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38536755

ABSTRACT

Pressure-induced transformations in an archetypal chalcogenide glass (GeSe2) have been investigated up to 157 GPa by X-ray absorption spectroscopy (XAS) and molecular dynamics (MD) simulations. Ge and Se K-edge XAS data allowed simultaneous tracking of the correlated local structural and electronic changes at both Ge and Se sites. Thanks to the simultaneous analysis of extended X-ray absorption fine structure (EXAFS) signals of both edges, reliable quantitative information about the evolution of the first neighbor Ge-Se distribution could be obtained. It also allowed to account for contributions of the Ge-Ge and Se-Se bond distributions (chemical disorder). The low-density to high-density amorphous-amorphous transformation was found to occur within 10 to 30 GPa pressure range, but the conversion from tetrahedral to octahedral coordination of the Ge sites is completed above [Formula: see text] 80 GPa. No convincing evidence of another high-density amorphous state with coordination number larger than six was found within the investigated pressure range. The number of short Ge-Ge and Se-Se "wrong" bonds was found to increase upon pressurization. Experimental XAS results are confirmed by MD simulations, indicating the increase of chemical disorder under high pressure.

4.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(3): 149-164, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38311394

ABSTRACT

Since the large-volume press with a double-stage multianvil system was created by the late Professor Naoto Kawai, this apparatus (Kawai-type multianvil apparatus or KMA) has been developed for higher-pressure generation, in situ X-ray and neutron observations, deformation experiments, measurements of physical properties, synthesis of high-pressure phases, etc., utilizing its large sample volume and capacity in stable and homogeneous high temperature generation compared to those of competitive diamond anvil cells. These advancements in KMA technology have been made primarily by Japanese scientists and engineers, which yielded a wealth of new experimental data on phase transitions, melting relations, and physical characteristics of minerals and rocks, leading to significant constraints on the structures, chemical compositions, and dynamics of the deep Earth. KMA technology has also been used for synthesis of novel functional materials such as nano-polycrystalline diamond and transparent nano-ceramics, opening a new research field of ultrahigh-pressure materials science.


Subject(s)
Diamond , Technology , Diamond/chemistry , Physical Phenomena
5.
Sci Rep ; 13(1): 15855, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37740075

ABSTRACT

The chemistry and mineralogy of slabs subducted into lower mantle control slab rheology and impact the deep volatile cycle. It is known that the metamorphism of little-altered oceanic crust results in eclogite rocks with subequal proportions of garnet and clinopyroxene. With increasing pressure, these minerals react to stabilize pyrope-rich tetragonal majoritic garnet. However, some eclogites contain higher proportions of omphacitic clinopyroxene, caused by Na- and Si-rich metasomatism on the ocean floor or during subduction. The mineralogy of such eclogites is expected to evolve differently. Here, we discuss the results of the crystallization products of omphacitic glass at ~ 18 and ~ 25 GPa and 1000 °C to simulate P-T regimes of cold subduction. The full characterization of the recovered samples indicates evidence of crystallization of Na-, Si-rich cubic instead of tetragonal majorite. This cubic majorite can incorporate large amounts of ferric iron, promoting redox reactions with surrounding volatile-bearing fluids and, ultimately, diamond formation. In addition, the occurrence of cubic majorite in the slab would affect the local density, favoring the continued buoyancy of the slab as previously proposed by seismic observations. Attention must be paid to omphacitic inclusions in sublithospheric diamonds as these might have experienced back-transformation from the HP isochemical cubic phase.

6.
Inorg Chem ; 62(16): 6263-6273, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37032490

ABSTRACT

We report a novel high-pressure coupling (HPC) reaction that couples the nitridation of Re with high-pressure solid-state metathesis (HPSSM) of Fe3N to produce a spherical bulk RexN/Fe3N composite. Compared with conventional methods, upon coupling of the HPSSM reactions, the synthetic pressure for Re nitridation was successfully reduced from 13 to 10 GPa (for Re3N) and from 20 to 15 GPa (for Re2N). The product RexN species would be surrounded by product Fe3N, resulting in a spherical bulk RexN/Fe3N composite (x = 2 or 3). The composite exhibits a soft magnetic behavior, and the content of nitrogen in RexN (x = 2 or 3) was controlled by adjusting the P-T conditions. The HPC reaction establishes a new approach for the bulk synthesis of 5d transition metal nitride.

7.
J Phys Condens Matter ; 35(26)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36990102

ABSTRACT

Pressure-induced transformations in glassy GeSe2have been studied using the x-ray absorption spectroscopy. Experiments have been carried out at the scanning-energy beamline BM23 (European Synchrotron Radiation Facility) providing a micrometric x-ray focal spot up to pressures of about 45 GPa in a diamond anvil cell. Both Se and Ge K-edge experiments were performed under different hydrostatic conditions identifying the metallization onsets by accurate determinations of the edge shifts. The semiconductor-metal transition was observed to be completed around 20 GPa when neon was used as a pressure transmitting medium (PTM), while this transition was slightly shifted to lower pressures when no PTM was used. Accurate double-edge extended x-ray absorption fine structure (EXAFS) refinements were carried out using advanced data-analysis methods. EXAFS data-analysis confirmed the trend shown by the edge shifts for this disordered material, showing that the transition from tetrahedral to octahedral coordination for Ge sites is not fully achieved at 45 GPa. Results of present high pressure EXAFS experiments have shown the absence of significant neon incorporation into the glass within the pressure range up to 45 GPa.

8.
Nat Commun ; 13(1): 5213, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109510

ABSTRACT

The activity of deep-focus earthquakes, which increases with depth from ~400 km to a peak at ~600 km, is enigmatic, because conventional brittle failure is unlikely to occur at elevated pressures. It becomes increasingly clear that pressure-induced phase transitions of olivine are responsible for the occurrence of the earthquakes, based on deformation experiments under pressure. However, many such experiments were made using analogue materials and those on mantle olivine are required to verify the hypotheses developed by these studies. Here we report the results of deformation experiments on (Mg,Fe)2SiO4 olivine at 11-17 GPa and 860-1350 K, equivalent to the conditions of the slabs subducted into the mantle transition zone. We find that throughgoing faulting occurs only at very limited temperatures of 1100-1160 K, accompanied by intense acoustic emissions at the onset of rupture. Fault sliding aided by shear heating occurs along a weak layer, which is formed via linking-up of lenticular packets filled with nanocrystalline olivine and wadsleyite. Our study suggests that transformational faulting occurs on the isothermal surface of the metastable olivine wedge in slabs, leading to deep-focus earthquakes in limited regions and depth range.

9.
Proc Natl Acad Sci U S A ; 119(40): e2208717119, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36161890

ABSTRACT

Ice polymorphs show extraordinary structural diversity depending on pressure and temperature. The behavior of hydrogen-bond disorder not only is a key ingredient for their structural diversity but also controls their physical properties. However, it has been a challenge to determine the details of the disordered structure in ice polymorphs under pressure, because of the limited observable reciprocal space and inaccuracies related to high-pressure techniques. Here, we present an elucidation of the disordered structure of ice VII, the dominant high-pressure form of water, at 2.2 GPa and 298 K, from both single-crystal and powder neutron-diffraction techniques. We reveal the three-dimensional atomic distributions from the maximum entropy method and unexpectedly find a ring-like distribution of hydrogen in contrast to the commonly accepted discrete sites. In addition, total scattering analysis at 274 K clarified the difference in the intermolecular structure from ice VIII, the ordered counterpart of ice VII, despite an identical molecular geometry. Our complementary structure analyses robustly demonstrate the unique disordered structure of ice VII. Furthermore, these findings are related to proton dynamics, which drastically vary with pressure, and will contribute to an understanding of the structural origin of anomalous physical properties of ice VII under pressures.

10.
Inorg Chem ; 61(10): 4476-4483, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35226490

ABSTRACT

High-pressure techniques open exploration of functional materials in broad research fields. An established diamond anvil cell with a boron-doped diamond heater and transport measurement terminals has performed the high-pressure synthesis of a cubic Sn3S4 superconductor. X-ray diffraction and Raman spectroscopy reveal that the Sn3S4 phase is stable in the pressure range of P > 5 GPa in a decompression process. Transport measurement terminals in the diamond anvil cell detect a metallic nature and superconductivity in the synthesized Sn3S4 with a maximum onset transition temperature (Tconset) of 13.3 K at 5.6 GPa. The observed pressure-Tc relationship is consistent with that from the first-principles calculation. The observation of superconductivity in Sn3S4 opens further materials exploration under high-temperature and -pressure conditions.

11.
Sci Rep ; 12(1): 1217, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35075233

ABSTRACT

An advanced experimental and theoretical model to explain the correlation between the electronic and local structure of Eu[Formula: see text] in two different environments within a same compound, EuS, is presented. EuX monochalcogenides (X: O, S, Se, Te) exhibit anomalies in all their properties around 14 GPa with a semiconductor to metal transition. Although it is known that these changes are related to the [Formula: see text] [Formula: see text] [Formula: see text] electronic transition, no consistent model of the pressure-induced modifications of the electronic structure currently exists. We show, by optical and x-ray absorption spectroscopy, and by ab initio calculations up to 35 GPa, that the pressure evolution of the crystal field plays a major role in triggering the observed electronic transitions from semiconductor to the half-metal and finally to the metallic state.

12.
ACS Nano ; 15(5): 8283-8294, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33929826

ABSTRACT

Bulk nanopolycrystalline diamond (NPD) samples were deformed plastically within the diamond stability field up to 14 GPa and above 1473 K. Macroscopic differential stress Δσ was determined on the basis of the distortion of the 111 Debye ring using synchrotron X-ray diffraction. Up to ∼5(2)% strain, Debye ring distortion can be satisfactorily described by lattice strain theories as an ellipse. Beyond ∼5(2)% strain, lattice spacing d111 along the Δσ direction becomes saturated and remains constant with further deformation. Transmission electron microscopy on as-synthesized NPD shows well-bonded grain boundaries with no free dislocations within the grains. Deformed samples also contain very few free dislocations, while density of {111} twins increases with plastic strain. Individual grains display complex contrast, exhibiting increasing misorientation with deformation according electron diffraction. Thus, NPD does not deform by dislocation slip, which is the dominated mechanism in conventional polycrystalline diamond composites (PCDCs, grain size >1 µm). The nonelliptical Debye ring distortion is modeled by nucleating 12⟨110⟩ dislocations or their dissociated 16⟨112⟩ partials gliding in the {111} planes to produce deformation twinning. With increasing strain up to ∼5(2)%, strength increases rapidly to ∼20(1) GPa, where d111 reaches saturation. Strength beyond the saturation shows a weak dependence on strain, reaching ∼22(1) GPa at >10% strain. Overall, the strength is ∼2-3 times that of conventional PCDCs. Combined with molecular dynamics simulations and lattice rotation theory, we conclude that the rapid rise of strength with strain is due to defect-source strengthening, whereas further deformation is dominated by nanotwinning and lattice rotation.

13.
Nat Commun ; 12(1): 1496, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674600

ABSTRACT

The blueschist to eclogite transition is one of the major geochemical-metamorphic processes typifying the subduction zone, which releases fluids triggering earthquakes and arc volcanism. Although glaucophane is an index hydrous mineral for the blueschist facies, its stability at mantle depths in diverse subduction regimes of contemporary and early Earth has not been experimentally determined. Here, we show that the maximum depth of glaucophane stability increases with decreasing thermal gradients of the subduction system. Along cold subduction geotherm, glaucophane remains stable down ca. 240 km depth, whereas it dehydrates and breaks down at as shallow as ca. 40 km depth under warm subduction geotherm or the Proterozoic tectonic setting. Our results imply that secular cooling of the Earth has extended the stability of glaucophane and consequently enabled the transportation of water into deeper interior of the Earth, suppressing arc magmatism, volcanism, and seismic activities along subduction zones.

14.
Phys Chem Chem Phys ; 23(5): 3321-3326, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33507189

ABSTRACT

Metallization and dissociation are key transformations in diatomic molecules at high densities particularly significant for modeling giant planets. Using X-ray absorption spectroscopy and atomistic modeling, we demonstrate that in halogens, the formation of a connected molecular structure takes place at pressures well below metallization. Here we show that the iodine diatomic molecule first elongates by ∼0.007 Å up to a critical pressure of Pc ∼ 7 GPa, developing bonds between molecules. Then its length continuously decreases with pressure up to 15-20 GPa. Universal trends in halogens are shown and allow us to predict for chlorine a pressure of 42 ± 8 GPa for molecular bond-length reversal. Our findings contribute to tackling the molecule invariability paradigm in diatomic molecular phases at high pressures and may be generalized to other abundant diatomic molecules in the universe, including hydrogen.

15.
Phys Rev Lett ; 125(18): 185701, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33196243

ABSTRACT

Hugoniot of full-dense nanopolycrystalline diamond (NPD) was investigated up to 1600 GPa. The Hugoniot elastic limit of NPD is 208 (±14) GPa, which is more than twice as high as that of single-crystal diamond. The Hugoniot of NPD is stiffer than that of single-crystal diamond up to 500 GPa, while no significant difference is observed at higher pressures where the elastic precursor is overdriven by a following plastic wave. These findings confirm that the grain boundary strengthening effect recognized in static compression experiments is also effective against high strain-rate dynamic compressions.

16.
Phys Chem Chem Phys ; 22(42): 24299-24309, 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33094300

ABSTRACT

The electronic and local structural properties of CuO under pressure have been investigated by means of X-ray absorption spectroscopy (XAS) at Cu K edge and ab initio calculations, up to 17 GPa. The crystal structure of CuO consists of Cu motifs within CuO4 square planar units and two elongated apical Cu-O bonds. The CuO4 square planar units are stable in the studied pressure range, with Cu-O distances that are approximately constant up to 5 GPa, and then decrease slightly up to 17 GPa. In contrast, the elongated Cu-O apical distances decrease continuously with pressure in the studied range. An anomalous increase of the mean square relative displacement (EXAFS Debye-Waller, σ2) of the elongated Cu-O path is observed from 5 GPa up to 13 GPa, when a drastic reduction takes place in σ2. This is interpreted in terms of local dynamic disorder along the apical Cu-O path. At higher pressures (P > 13 GPa), the local structure of Cu2+ changes from a 4-fold square planar to a 4+2 Jahn-Teller distorted octahedral ion. We interpret these results in terms of the tendency of the Cu2+ ion to form favorable interactions with the apical O atoms. Also, the decrease in Cu-O apical distance caused by compression softens the normal mode associated with the out-of-plane Cu movement. CuO is predicted to have an anomalous rise in permittivity with pressure as well as modest piezoelectricity in the 5-13 GPa pressure range. In addition, the near edge features in our XAS experiment show a discontinuity and a change of tendency at 5 GPa. For P < 5 GPa the evolution of the edge shoulder is ascribed to purely electronic effects which also affect the charge transfer integral. This is linked to a charge migration from the Cu to O, but also to an increase of the energy band gap, which show a change of tendency occurring also at 5 GPa.

17.
Rev Sci Instrum ; 91(8): 085114, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32872921

ABSTRACT

We have developed a new internally heated diamond anvil cell (DAC) system for in situ high-pressure and high-temperature x-ray and optical experiments. We have adopted a self-heating W/Re gasket design allowing for both sample confinement and heating. This solution has been seldom used in the past but proved to be very efficient to reduce the size of the heating spot near the sample region, improving heating and cooling rates as compared to other resistive heating strategies. The system has been widely tested under high-temperature conditions by performing several thermal emission measurements. A robust relationship between electric power and average sample temperature inside the DAC has been established up to about 1500 K by a measurement campaign on different simple substances. A micro-Raman spectrometer was used for various in situ optical measurements and allowed us to map the temperature distribution of the sample. The distribution resulted to be uniform within the typical uncertainty of these measurements (5% at 1000 K). The high-temperature performances of the DAC were also verified in a series of XAS (x-ray absorption spectroscopy) experiments using both nano-polycrystalline and single-crystal diamond anvils. XAS measurements of germanium at 3.5 GPa were obtained in the 300 K-1300 K range, studying the melting transition and nucleation to the crystal phase. The achievable heating and cooling rates of the DAC were studied exploiting a XAS dispersive setup, collecting series of near-edge XAS spectra with sub-second time resolution. An original XAS-based dynamical temperature calibration procedure was developed and used to monitor the sample and diamond temperatures during the application of constant power cycles, indicating that heating and cooling rates in the 100 K/s range can be easily achieved using this device.

18.
Sci Rep ; 10(1): 11663, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32669572

ABSTRACT

X-ray absorption spectroscopy (XAS) is a widely used technique to probe the local environment around specific atomic species. Applied to samples under extreme pressure and temperature conditions, XAS is sensitive to phase transitions, including melting, and allows gathering insights on compositional variations and electronic changes occurring during such transitions. These characteristics can be exploited for studies of prime interest in geophysics and fundamental high-pressure physics. Here, we investigated the melting curve and the eutectic composition of four geophysically relevant iron binary systems: Fe-C, Fe-O, Fe-S and Fe-Si. Our results show that all these systems present the same spectroscopic signatures upon melting, common to those observed for other pure late 3d transition metals. The presented melting criterion seems to be general for late 3d metals bearing systems. Additionally, we demonstrate the suitability of XAS to extract melt compositional information in situ, such as the evolution of the concentration of light elements with increasing temperature. Diagnostics presented in this work can be applied to studies over an even larger pressure range exploiting the upgraded synchrotron machines, and directly transferred to time-resolved extreme condition studies using dynamic compression (ns) or fast laser heating (ms).

19.
J Chem Phys ; 153(6): 064501, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-35287441

ABSTRACT

We have studied the amorphization process of SnI4 up to 26.8 GPa with unprecedented experimental details by combining Sn and I K-edge x-ray absorption spectroscopy and powder x-ray diffraction. Standard and reverse Monte Carlo extended x-ray absorption fine structure (EXAFS) refinements confirm that the penta atomic SnI4 structural unit tetrahedron is a fundamental structural unit that appears preserved through the crystalline phase-I to crystalline phase-II transition that has been previously reported between 7 GPa and 10 GPa. Up to now, unexploited iodine EXAFS reveals to be extremely informative and confirms the progressive formation of iodine-iodine short bonds close to 2.85 Å. A coordination number increase of Sn in the crystalline phase-II region appears to be excluded, while the deformation of the tetrahedral units proceeds through a flattening that keeps the average I-Sn-I angle close to 109.5°. Moreover, we put in evidence the impact of pressure on the Sn near edge structure under competing geometrical and electronic effects.

20.
Inorg Chem ; 59(1): 325-331, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31814391

ABSTRACT

A high-throughput first-principles calculation-assisted data-driven approach based on an inorganic materials database named AtomWork was performed to explore new superconducting materials. Specific band structures of a small band gap and flat band at band edges were used in a screening procedure. Among the candidates studied, we focused on AgIn5Se8, which shows a high density of state at the Fermi level. Single crystals of AgIn5Se8 were successfully obtained via a melt and slow cooling method. The valence states in AgIn5Se8 were estimated to be Ag1+, In3+, and Se2- using X-ray photoelectron spectroscopy. An electrical transport property of resistance was measured under high pressure using an electrodes-inserted diamond anvil cell. The sample exhibited an insulator-to-metal transition with a drastic decrease of the resistance by increasing the pressure up to 24.8 GPa. A possibility of a pressure-driven phase transition below this pressure was indicated by an enthalpy calculation. At a higher pressure region of 52.5 GPa, a pressure-induced superconducting transition was observed at 3.4 K. The maximum transition temperature was increased up to 3.7 K under the pressure of 74.0 GPa.

SELECTION OF CITATIONS
SEARCH DETAIL