Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Methods Appl Fluoresc ; 11(1)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36252561

ABSTRACT

Hyperspectral imaging (HSI) is a paramount technique in biomedical science, however, unmixing and quantification of each spectral component is a challenging task. Traditional unmixing relies on algorithms that need spectroscopic parameters from the fluorescent species in the sample. The phasor-based multi-harmonic unmixing method requires only the empirical measurement of the pure species to compute the pixel-wise photon fraction of every spectral component. Using simulations, we demonstrate the feasibility of the approach for up to 5 components and explore the use of adding a 6th unknown component representing autofluorescence. The simulations show that the method can be successfully used in typical confocal imaging experiments (with pixel photon counts between 101and 103). As a proof of concept, we tested the method in living cells, using 5 common commercial dyes for organelle labeling and we easily and accurately separate them. Finally, we challenged the method by introducing a solvatochromic probe, 6-Dodecanoyl-N,N-dimethyl-2-naphthylamine (LAURDAN), intended to measure membrane dynamics on specific subcellular membrane-bound organelles by taking advantage of the linear combination between the organelle probes and LAURDAN. We succeeded in monitoring the membrane order in the Golgi apparatus, Mitochondria, and plasma membrane in the samein-vivocell and quantitatively comparing them. The phasor-based multi-harmonic unmixing method can help expand the outreach of HSI and democratize its use by the community for it does not require specialized knowledge.


Subject(s)
2-Naphthylamine , Laurates , Laurates/analysis , Laurates/chemistry , 2-Naphthylamine/analysis , 2-Naphthylamine/chemistry , Microscopy, Fluorescence/methods , Cell Membrane
2.
PLoS Genet ; 18(6): e1009896, 2022 06.
Article in English | MEDLINE | ID: mdl-35653384

ABSTRACT

CCDC28B (coiled-coil domain-containing protein 28B) was identified as a modifier in the ciliopathy Bardet-Biedl syndrome (BBS). Our previous work in cells and zebrafish showed that CCDC28B plays a role regulating cilia length in a mechanism that is not completely understood. Here we report the generation of a Ccdc28b mutant mouse using CRISPR/Cas9 (Ccdc28b mut). Depletion of CCDC28B resulted in a mild phenotype. Ccdc28b mut animals i) do not present clear structural cilia affectation, although we did observe mild defects in cilia density and cilia length in some tissues, ii) reproduce normally, and iii) do not develop retinal degeneration or obesity, two hallmark features of reported BBS murine models. In contrast, Ccdc28b mut mice did show clear social interaction defects as well as stereotypical behaviors. This finding is indeed relevant regarding CCDC28B as a modifier of BBS since behavioral phenotypes have been documented in BBS. Overall, this work reports a novel mouse model that will be key to continue evaluating genetic interactions in BBS, deciphering the contribution of CCDC28B to modulate the presentation of BBS phenotypes. In addition, our data underscores a novel link between CCDC28B and behavioral defects, providing a novel opportunity to further our understanding of the genetic, cellular, and molecular basis of these complex phenotypes.


Subject(s)
Bardet-Biedl Syndrome , Retinal Degeneration , Animals , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/metabolism , Cilia/metabolism , Mice , Phenotype , Retinal Degeneration/genetics , Zebrafish/genetics
3.
Sci Rep ; 9(1): 14381, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31591441

ABSTRACT

The protein Deleted in Breast Cancer-1 is a regulator of several transcription factors and epigenetic regulators, including HDAC3, Rev-erb-alpha, PARP1 and SIRT1. It is well known that DBC1 regulates its targets, including SIRT1, by protein-protein interaction. However, little is known about how DBC1 biological activity is regulated. In this work, we show that in quiescent cells DBC1 is proteolytically cleaved, producing a protein (DN-DBC1) that misses the S1-like domain and no longer binds to SIRT1. DN-DBC1 is also found in vivo in mouse and human tissues. Interestingly, DN-DBC1 is cleared once quiescent cells re-enter to the cell cycle. Using a model of liver regeneration after partial hepatectomy, we found that DN-DBC1 is down-regulated in vivo during regeneration. In fact, WT mice show a decrease in SIRT1 activity during liver regeneration, coincidentally with DN-DBC1 downregulation and the appearance of full length DBC1. This effect on SIRT1 activity was not observed in DBC1 KO mice. Finally, we found that DBC1 KO mice have altered cell cycle progression and liver regeneration after partial hepatectomy, suggesting that DBC1/DN-DBC1 transitions play a role in normal cell cycle progression in vivo after cells leave quiescence. We propose that quiescent cells express DN-DBC1, which either replaces or coexist with the full-length protein, and that restoring of DBC1 is required for normal cell cycle progression in vitro and in vivo. Our results describe for the first time in vivo a naturally occurring form of DBC1, which does not bind SIRT1 and is dynamically regulated, thus contributing to redefine the knowledge about its function.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Gene Knockout Techniques , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle/genetics , Humans , Liver Regeneration/genetics , Male , Mice , Mice, Inbred C57BL , Molecular Weight , Protein Binding/genetics , Protein Domains , Proteolysis , Sirtuin 1/metabolism
4.
J Mol Histol ; 50(3): 189-202, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30911868

ABSTRACT

The cilia and flagella of eukaryotic cells serve many functions, exhibiting remarkable conservation of both structure and molecular composition in widely divergent eukaryotic organisms. SPAG6 and SPAG16 are the homologous in the mice to Chlamydomonas reinhardtii PF16 and PF20. Both proteins are associated with the axonemal central apparatus and are essential for ciliary and flagellar motility in mammals. Recent data derived from high-throughput studies revealed expression of these genes in tissues that do not contain motile cilia. However, the distribution of SPAG6 and SPAG16 in ciliated and non-ciliated tissues is not completely understood. In this work, we performed a quantitative analysis of the expression of Spag6 and Spag16 genes in parallel with the immune-localization of the proteins in several tissues of adult mice. Expression of mRNA was higher in the testis and tissues bearing motile cilia than in the other analyzed tissues. Both proteins were present in ciliated and non-ciliated tissues. In the testis, SPAG6 was detected in spermatogonia, spermatocytes, and in the sperm flagella whereas SPAG16 was found in spermatocytes and in the sperm flagella. In addition, both proteins were detected in the cytoplasm of cells from the brain, spinal cord, and ovary. A small isoform of SPAG16 was localized in the nucleus of germ cells and some neurons. In a parallel set of experiments, we overexpressed EGFP-SPAG6 in cultured cells and observed that the protein co-localized with a subset of acetylated cytoplasmic microtubules. A role of these proteins stabilizing the cytoplasmic microtubules of eukaryotic cells is discussed.


Subject(s)
Cilia/genetics , Microtubule Proteins/genetics , Microtubule-Associated Proteins/genetics , Neurons/metabolism , Animals , Chlamydomonas reinhardtii/genetics , Cilia/metabolism , Ependyma/metabolism , Gene Expression Regulation, Developmental/genetics , Male , Mice , Microtubule Proteins/isolation & purification , Microtubule-Associated Proteins/isolation & purification , Protein Isoforms/genetics , Protein Isoforms/metabolism , Spermatocytes/metabolism , Spermatogonia/metabolism
5.
Sci Rep ; 8(1): 3019, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29445114

ABSTRACT

Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, polydactyly, renal disease and mental retardation. CCDC28B is a BBS-associated protein that we have previously shown plays a role in cilia length regulation whereby its depletion results in shortened cilia both in cells and Danio rerio (zebrafish). At least part of that role is achieved by its interaction with the mTORC2 component SIN1, but the mechanistic details of this interaction and/or additional functions that CCDC28B might play in the context of cilia remain poorly understood. Here we uncover a novel interaction between CCDC28B and the kinesin 1 molecular motor that is relevant to cilia. CCDC28B interacts with kinesin light chain 1 (KLC1) and the heavy chain KIF5B. Notably, depletion of these kinesin 1 components results in abnormally elongated cilia. Furthermore, through genetic interaction studies we demonstrate that kinesin 1 regulates ciliogenesis through CCDC28B. We show that kinesin 1 regulates the subcellular distribution of CCDC28B, unexpectedly, inhibiting its nuclear accumulation, and a ccdc28b mutant missing a nuclear localization motif fails to rescue the phenotype in zebrafish morphant embryos. Therefore, we uncover a previously unknown role of kinesin 1 in cilia length regulation that relies on the BBS related protein CCDC28B.


Subject(s)
Bardet-Biedl Syndrome/metabolism , Cell Cycle Proteins/metabolism , Cilia/physiology , Cytoskeletal Proteins/metabolism , Kinesins/metabolism , Zebrafish Proteins/metabolism , Animals , Bardet-Biedl Syndrome/genetics , Cell Cycle Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Cytoskeletal Proteins/genetics , HEK293 Cells , Humans , Kinesins/genetics , Mutation/genetics , Nuclear Localization Signals/genetics , Obesity , Polydactyly , Protein Binding , Protein Transport , Retinal Degeneration , Zebrafish , Zebrafish Proteins/genetics
6.
PLoS One ; 11(8): e0162033, 2016.
Article in English | MEDLINE | ID: mdl-27579771

ABSTRACT

Gli2 is the primary transcriptional activator of Hedgehog signalling in mammals. Upon stimulation of the pathway, Gli2 moves into the cilium before reaching the nucleus. However, the mechanisms underlying its entry into the cilium are not completely understood. Since several similarities have been reported between nuclear and ciliary import, we investigated if the nuclear import machinery participates in Gli2 ciliary entry. Here we show that while two conserved classical nuclear localization signals mediate Gli2 nuclear localization via importin (Imp)-α/ß1, these sequences are not required for Gli2 ciliary import. However, blocking Imp-mediated transport through overexpression of GTP-locked Ran reduced the percentage of Gli2 positive cilia, an effect that was not explained by increased CRM1-dependent export of Gli2 from the cilium. We explored the participation of Imp-ß2 in Gli2 ciliary traffic and observed that this transporter is involved in moving Gli2 into the cilium, as has been described for other ciliary proteins. In addition, our data indicate that Imp-ß2 might also collaborate in Gli2 nuclear entry. How does Imp-ß2 determine the final destination of a protein that can localize to two distinct subcellular compartments remains an open question. Therefore, our data shows that the nuclear-cytoplasmic shuttling machinery plays a critical role mediating the subcellular distribution of Gli2 and the activation of the pathway, but distinct importins likely play a differential role mediating its ciliary and nuclear translocation.


Subject(s)
Cell Nucleus/metabolism , Cilia/metabolism , Nuclear Localization Signals/metabolism , alpha Karyopherins/metabolism , beta Karyopherins/metabolism , Active Transport, Cell Nucleus , Animals , HEK293 Cells , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , NIH 3T3 Cells , Nuclear Localization Signals/genetics , Protein Transport , Zinc Finger Protein Gli2
7.
Mol Biochem Parasitol ; 206(1-2): 13-9, 2016.
Article in English | MEDLINE | ID: mdl-26975431

ABSTRACT

The trace element selenium is found in polypeptides as selenocysteine, the 21(st) amino acid that is co-translationally inserted into proteins at a UGA codon. In proteins, selenocysteine usually plays a role as an efficient redox catalyst. Trypanosomatids previously examined harbor a full set of genes encoding the machinery needed for selenocysteine biosynthesis and incorporation into three selenoproteins: SelK, SelT and, the parasite-specific, Seltryp. We investigated the selenoproteome of kinetoplastid species in recently sequenced genomes and assessed the in vivo relevance of selenoproteins for African trypanosomes. Database mining revealed that SelK, SelT and Seltryp genes are present in most kinetoplastids, including the free-living species Bodo saltans, and Seltryp was lost in the subgenus Viannia from the New World Leishmania. Homology and sinteny with bacterial sulfur dioxygenases and sulfur transferases suggest a putative role for Seltryp in sulfur metabolism. A Trypanosoma brucei selenocysteine synthase (SepSecS) null-mutant, in which selenoprotein synthesis is abolished, displayed similar sensitivity to oxidative stress induced by a short-term exposure to high concentrations of methylglyoxal or H2O2 to that of the parental wild-type cell line. Importantly, the infectivity of the SepSecS knockout cell line was not impaired when tested in a mouse infection model and compensatory effects via up-regulation of proteins involved in thiol-redox metabolism were not observed. Collectively, our data show that selenoproteins are not required for survival of African trypanosomes in a mammalian host and exclude a role for selenoproteins in parasite antioxidant defense and/or virulence. On this basis, selenoproteins can be disregarded as drug target candidates.


Subject(s)
Kinetoplastida/metabolism , Protozoan Proteins/genetics , Selenocysteine/metabolism , Selenoproteins/genetics , Transferases/genetics , Trypanosoma brucei brucei/metabolism , Animals , Data Mining , Databases, Genetic , Gene Deletion , Gene Expression Regulation , Host-Parasite Interactions , Hydrogen Peroxide/pharmacology , Kinetoplastida/classification , Kinetoplastida/drug effects , Kinetoplastida/growth & development , Mice , Phylogeny , Proteome/genetics , Proteome/metabolism , Protozoan Proteins/metabolism , Pyruvaldehyde/pharmacology , Selenoproteins/deficiency , Transferases/deficiency , Trypanosoma brucei brucei/classification , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/pathology
8.
FEBS Lett ; 589(22): 3479-91, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26231314

ABSTRACT

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic disorder, characterized by both congenital and late onset defects. From the analysis of the mutational burden in patients to the functional characterization of the BBS proteins, this syndrome has become a model for both understanding oligogenic patterns of inheritance and the biology of a particular cellular organelle: the primary cilium. Here we briefly review the genetics of BBS to then focus on the function of the BBS proteins, not only in the context of the cilium but also highlighting potential extra-ciliary roles that could be relevant to the etiology of the disorder. Finally, we provide an overview of how the study of this rare syndrome has contributed to the understanding of cilia biology and how this knowledge has informed on the cellular basis of different clinical manifestations that characterize BBS and the ciliopathies.


Subject(s)
Bardet-Biedl Syndrome/pathology , Cilia/pathology , Animals , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/metabolism , Cilia/metabolism , Humans , Phenotype , Proteins/metabolism
9.
BMC Mol Biol ; 15: 12, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24993635

ABSTRACT

BACKGROUND: DZIP1 (DAZ-interacting protein 1) has been described as a component of the Hh signaling pathway with a putative regulatory role in ciliogenesis. DZIP1 interacts with DAZ RNA binding proteins in embryonic stem cells and human germ cells suggesting a role in mRNA regulation. RESULTS: We investigated DZIP1 function in HeLa cells and its involvement in ribonucleoprotein complexes. DZIP1 was predominantly located in granules in the cytoplasm. Under oxidative stress conditions, DZIP1 re-localized to stress granules. DZIP appears to be important for the formation of stress granules during the stress response. We used immunoprecipitation assays with antibodies against DZIP1 and microarray hybridization to identify mRNAs associated with DZIP1. The genetic networks formed by the DZIP1-associated mRNAs were involved in cell cycle and gene expression regulation. DZIP1 is involved in the Hedgehog signaling pathway. We used cyclopamine, a specific inhibitor of this pathway, to analyze the expression of DZIP1 and its associated mRNAs. The abundance of DZIP1-associated mRNAs increased with treatment; however, the silencing or overexpression of DZIP1 in HeLa cells had no effect on the accumulation of the associated mRNAs. Polysomal profile analysis by sucrose gradient centrifugation demonstrated the presence of DZIP1 in the polysomal fraction. CONCLUSIONS: Our results suggest that DZIP1 is part of an RNP complex that occupies various subcellular locations. The diversity of the mRNAs associated with DZIP1 suggests that this protein is a component of different RNPs associated with translating polysomes and with RNA granules.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytoplasmic Granules/genetics , Oxidative Stress/genetics , Ribonucleoproteins/genetics , Cell Cycle/genetics , Cell Line, Tumor , Gene Expression Regulation/genetics , HeLa Cells , Hedgehog Proteins/genetics , Humans , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Signal Transduction/genetics
10.
Hum Mol Genet ; 22(20): 4031-42, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23727834

ABSTRACT

CCDC28B encodes a coiled coil domain-containing protein involved in ciliogenesis that was originally identified as a second site modifier of the ciliopathy Bardet-Biedl syndrome. We have previously shown that the depletion of CCDC28B leads to shortened cilia; however, the mechanism underlying how this protein controls ciliary length is unknown. Here, we show that CCDC28B interacts with SIN1, a component of the mTOR complex 2 (mTORC2), and that this interaction is important both in the context of mTOR signaling and in a hitherto unknown, mTORC-independent role of SIN1 in cilia biology. We show that CCDC28B is a positive regulator of mTORC2, participating in its assembly/stability and modulating its activity, while not affecting mTORC1 function. Further, we show that Ccdc28b regulates cilia length in vivo, at least in part, through its interaction with Sin1. Importantly, depletion of Rictor, another core component of mTORC2, does not result in shortened cilia. Taken together, our findings implicate CCDC28B in the regulation of mTORC2, and uncover a novel function of SIN1 regulating cilia length that is likely independent of mTOR signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Bardet-Biedl Syndrome/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Cilia/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cytoskeletal Proteins , Gene Expression Regulation , Gene Knockdown Techniques , HEK293 Cells , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 2 , Mice , Microtubule-Associated Proteins , NIH 3T3 Cells , Rapamycin-Insensitive Companion of mTOR Protein , Signal Transduction/physiology , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
11.
Hum Genet ; 132(1): 91-105, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23015189

ABSTRACT

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder that is generally inherited in an autosomal recessive fashion. However, in some families, trans mutant alleles interact with the primary causal locus to modulate the penetrance and/or the expressivity of the phenotype. CCDC28B (MGC1203) was identified as a second site modifier of BBS encoding a protein of unknown function. Here we report the first functional characterization of this protein and show it affects ciliogenesis both in cultured cells and in vivo in zebrafish. Consistent with this biological role, our in silico analysis shows that the presence of CCDC28B homologous sequences is restricted to ciliated metazoa. Depletion of Ccdc28b in zebrafish results in defective ciliogenesis and consequently causes a number of phenotypes that are characteristic of BBS and other ciliopathy mutants including hydrocephalus, left-right axis determination defects and renal function impairment. Thus, this work reports CCDC28B as a novel protein involved in the process of ciliogenesis whilst providing functional insight into the cellular basis of its modifier effect in BBS patients.


Subject(s)
Bardet-Biedl Syndrome/genetics , Cell Cycle Proteins/genetics , Cilia/genetics , Zebrafish Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Amino Acid Sequence , Animals , Bardet-Biedl Syndrome/physiopathology , Cell Cycle Proteins/physiology , Cell Line , Cilia/physiology , Conserved Sequence , Cytoskeletal Proteins , Gene Knockdown Techniques , Humans , In Situ Hybridization , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Species Specificity , Zebrafish/physiology , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/chemistry , Zebrafish Proteins/physiology
12.
Parasitology ; 139(2): 271-83, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22216900

ABSTRACT

Infection by larval Echinococcus granulosus is usually characterized by tight inflammatory control. However, various degrees of chronic granulomatous inflammation are also observed, reaching a high point in infection of cattle by the most prevalent parasite strain worldwide, which is not well adapted to this host species. In this context, epithelioid and multinucleated giant macrophages surround the parasite, and the secreted products of these cells often associate with the larval wall. The phagocyte-specific S100 proteins, S100A8, S100A9 and S100A12, are important non-conventionally secreted amplifiers of inflammatory responses. We have analysed by proteomics and immunohistochemistry the presence of these proteins at the E. granulosus larva-host interface. We found that, in the context of inflammatory control as observed in human infections, the S100 proteins are not abundant, but S100A9 and S100A8 can be expressed by eosinophils distal to the parasite. In the granulomatous inflammation context as observed in cattle infections, we found that S100A12 is one of the most abundant host-derived, parasite-associated proteins, while S100A9 and S100A8 are not present at similarly high levels. As expected, S100A12 derives mostly from the epithelioid and multinucleated giant cells. S100A12, as well as cathepsin K and matrix metalloproteinase-9, also expressed by E. granulosus-elicited epithelioid cells, are connected to the Th17 arm of immunity, which may therefore be involved in this granulomatous response.


Subject(s)
Echinococcosis/veterinary , Echinococcus granulosus/physiology , Gene Expression Regulation/immunology , Phagocytes/metabolism , S100 Proteins/metabolism , Animals , Cattle , Echinococcosis/immunology , Echinococcosis/parasitology , Humans , Larva/physiology , Mice , Proteomics , S100 Proteins/genetics , Species Specificity
13.
Curr Genomics ; 12(4): 285-97, 2011 Jun.
Article in English | MEDLINE | ID: mdl-22131874

ABSTRACT

Primary cilia are post-mitotic cellular organelles that are present in the vast majority of cell types in the human body. An extensive body of data gathered in recent years is demonstrating a crucial role for this organelle in a number of cellular processes that include mechano and chemo-sensation as well as the transduction of signaling cascades critical for the development and maintenance of different tissues and organs. Consequently, cilia are currently viewed as cellular antennae playing a critical role at the interphase between cells and their environment, integrating a range of stimuli to modulate cell fate decisions including cell proliferation, migration and differentiation. Importantly, this regulatory role is not just a consequence of their participation in signal transduction but is also the outcome of both the tight synchronization/regulation of ciliogenesis with the cell cycle and the role of individual ciliary proteins in cilia-dependent and independent processes. Here we review the role of primary cilia in the regulation of cell proliferation and differentiation and illustrate how this knowledge has provided insight to understand the phenotypic consequences of ciliary dysfunction.

14.
Trends Parasitol ; 27(5): 204-13, 2011 May.
Article in English | MEDLINE | ID: mdl-21257348

ABSTRACT

Echinococcus larvae are protected by a massive carbohydrate-rich acellular structure, called the laminated layer. In spite of being widely considered the crucial element of these host-parasite interfaces, the laminated layer has been historically poorly understood. In fact, it is still often called 'chitinous', 'hyaline' or 'cuticular' layer, or said to be composed of polysaccharides. However, over the past few years the laminated layer was found to be comprised of mucins bearing defined galactose-rich carbohydrates, and accompanied, in the case of Echinococcus granulosus, by calcium inositol hexakisphosphate deposits. In this review, the architecture and biosynthesis of this unusual structure is discussed at depth in terms of what is known and what needs to be discovered.


Subject(s)
Echinococcus , Mucins/chemistry , Polysaccharides/chemistry , Animals , Echinococcus/anatomy & histology , Echinococcus/chemistry , Echinococcus/ultrastructure , Host-Parasite Interactions , Larva
15.
Biochem J ; 418(3): 595-604, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19053945

ABSTRACT

The epimastigote stage of Trypanosoma cruzi undergoes PCD (programmed cell death) when exposed to FHS (fresh human serum). Although it has been known for over 30 years that complement is responsible for FHS-induced death, the link between complement activation and triggering of PCD has not been established. We have previously shown that the mitochondrion participates in the orchestration of PCD in this model. Several changes in mitochondrial function were described, and in particular it was shown that mitochondrion-derived O(2)(*-) (superoxide radical) is necessary for PCD. In the present study, we establish mitochondrial Ca(2+) overload as the link between complement deposition and the observed changes in mitochondrial physiology and the triggering of PCD. We show that complement activation ends with the assembly of the MAC (membrane attack complex), which allows influx of Ca(2+) and release of respiratory substrates to the medium. Direct consequences of these events are accumulation of Ca(2+) in the mitochondrion and decrease in cell respiration. Mitochondrial Ca(2+) causes partial dissipation of the inner membrane potential and consequent mitochondrial uncoupling. Moreover, we provide evidence that mitochondrial Ca(2+) overload is responsible for the increased O(2)(*-) production, and that if cytosolic Ca(2+) rise is not accompanied by the accumulation of the cation in the mitochondrion and consequent production of O(2)(*-), epimastigotes die by necrosis instead of PCD. Thus our results suggest a model in which MAC assembly on the parasite surface allows Ca(2+) entry and its accumulation in the mitochondrion, leading to O(2)(*-) production, which in turn constitutes a PCD signal.


Subject(s)
Apoptosis/drug effects , Calcium/metabolism , Complement System Proteins/physiology , Mitochondria/physiology , Trypanosoma cruzi/cytology , Animals , Complement Activation/drug effects , Digitonin/pharmacology , Humans , Ionomycin/pharmacology , Mitochondria/drug effects , Serum/physiology , Superoxides/metabolism , Trypanosoma cruzi/metabolism
16.
Free Radic Biol Med ; 45(6): 733-42, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18588970

ABSTRACT

Trypanosoma cruzi is the etiologic agent of Chagas' disease, an infection that affects several million people in Latin America. With no immediate prospect of a vaccine and problems associated with current chemotherapies, the development of new treatments is an urgent priority. Several aspects of the redox metabolism of this parasite differ enough from those in the mammalian host to be considered targets for drug development. Here, we review the information about a trypanosomatid-specific molecule centrally involved in redox metabolism, the dithiol trypanothione, and the main effectors of cellular antioxidant defense. We focus mainly on data from T. cruzi, making comparisons with other trypanosomatids whenever possible. In these parasites trypanothione participates in crucial thiol-disulfide exchange reactions and serves as electron donor in different metabolic pathways, from synthesis of DNA precursors to oxidant detoxification. Interestingly, the levels of several enzymes involved in trypanothione metabolism and oxidant detoxification increase during the transformation of T. cruzi to its mammalian-infective form and the overexpression of some of them has been associated with increased resistance to macrophage-dependent oxidative killing. Together, the evidence suggests a central role of the trypanothione-dependent antioxidant systems in the infection process.


Subject(s)
Oxidants/metabolism , Trypanosoma cruzi/metabolism , Animals , Glutathione/analogs & derivatives , Glutathione/biosynthesis , Glutathione/metabolism , Oxidation-Reduction , Protozoan Proteins/metabolism , Spermidine/analogs & derivatives , Spermidine/biosynthesis , Spermidine/metabolism
17.
Biochem J ; 403(2): 323-34, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17168856

ABSTRACT

Trypanosoma cruzi undergo PCD (programmed cell death) under appropriate stimuli, the mechanisms of which remain to be established. In the present study, we show that stimulation of PCD in T. cruzi epimastigotes by FHS (fresh human serum) results in rapid (<1 h) externalization of phosphatidylserine and depletion of the low molecular mass thiols dihydrotrypanothione and glutathione. Concomitantly, enhanced generation of oxidants was established by EPR and immuno-spin trapping of radicals using DMPO (5,5-dimethylpyrroline-N-oxide) and augmentation of the glucose flux through the pentose phosphate pathway. In the early period (<20 min), changes in mitochondrial membrane potential and inhibition of respiration, probably due to the impairment of ADP/ATP exchange with the cytosol, were observed, conditions that favour the generation of O2*-. Accelerated rates of mitochondrial O2*- production were detected by the inactivation of the redox-sensitive mitochondrial aconitase and by oxidation of a mitochondrial-targeted probe (MitoSOX). Importantly, parasites overexpressing mitochondrial FeSOD (iron superoxide dismutase) were more resistant to the PCD stimulus, unambiguously indicating the participation of mitochondrial O2*- in the signalling process. In summary, FHS-induced PCD in T. cruzi involves mitochondrial dysfunction that causes enhanced O(2)(*-) formation, which leads to cellular oxidative stress conditions that trigger the initiation of PCD cascades; moreover, overexpression of mitochondrial FeSOD, which is also observed during metacyclogenesis, resulted in cytoprotective effects.


Subject(s)
Apoptosis , Cytoprotection , Mitochondria/metabolism , Superoxide Dismutase/metabolism , Superoxides/metabolism , Trypanosoma cruzi/cytology , Trypanosoma cruzi/metabolism , Animals , Cytochromes c/metabolism , Gene Expression Regulation, Enzymologic , Glutathione/analogs & derivatives , Glutathione/metabolism , Immunohistochemistry , NADH, NADPH Oxidoreductases/metabolism , Oxidative Stress , Spermidine/analogs & derivatives , Spermidine/metabolism , Superoxide Dismutase/genetics , Trypanosoma cruzi/genetics
18.
Arch Biochem Biophys ; 432(2): 222-32, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15542061

ABSTRACT

We studied the capacity of macrophage-derived peroxynitrite to diffuse into and exert cytotoxicity against Trypanosoma cruzi, the causative agent of Chagas' disease. In two types of macrophage-T. cruzi co-cultures, one with a fixed separation distance between source and target cells, and another involving cell-to-cell interactions, peroxynitrite resulted in significant oxidation of intracellular dihydrorhodamine and inhibition of [(3)H]thymidine incorporation in T. cruzi, which were not observed by superoxide or nitric oxide alone. The effects were attenuated in the presence of bicarbonate, in agreement with the extracellular consumption of peroxynitrite by its fast reaction with CO(2). However, studies using different T. cruzi densities, which allow to modify average diffusion distances of exogenously added peroxynitrite to target cells, indicate that at distances <5 microm, the diffusion process outcompetes the reaction with CO(2) and that the levels of peroxynitrite formed by macrophages would be sufficient to cause toxicity to T. cruzi during cell-to-cell contact and/or inside the phagosome.


Subject(s)
Cell Communication/physiology , Macrophages/metabolism , Oxygen/metabolism , Peroxynitrous Acid/biosynthesis , Peroxynitrous Acid/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/physiology , Animals , Cell Communication/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Respiration/drug effects , Cell Respiration/physiology , Coculture Techniques/methods , Diffusion , Mice , Oxidants/pharmacology , Oxidation-Reduction/drug effects , Peroxynitrous Acid/chemistry , Reactive Oxygen Species/metabolism
19.
J Cell Biochem ; 93(6): 1272-81, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15486919

ABSTRACT

The ubiquitous intracellular molecule myo-inositol hexakisphosphate (IP6) is present extracellularly in the hydatid cyst wall (HCW) of the parasitic cestode Echinococcus granulosus. This study shows that extracellular IP6 is present as its solid calcium salt, in the form of deposits that are observed, at the ultrastructural level, as naturally electron dense granules some tens of nanometers in diameter. The presence of a calcium salt of IP6 in these structures was determined by two different electron microscopy techniques: (i) the analysis of the spatial distribution of phosphorus and calcium in the outer, acellular layer of the HCW (the laminated layer, LL) through electron energy loss spectroscopy, and (ii) the observation, by transmission electron microscopy, of HCW that were selectively depleted of IP6 by treatment with EGTA or phytase, an enzyme that catalyses the dephosphorylation of IP6. The deposits of the IP6-Ca(II) salt are also observed inside membrane vesicles in cells of the germinal layer (the inner, cellular layer of the HCW), indicating that IP6 precipitates with calcium within a cellular vesicular compartment and is then secreted to the LL. Thus, much as in plants (that produce vesicular IP6 deposits), the existence of transporters for IP6 or its precursors in internal membranes is needed to explain the compound's cellular localisation in E. granulosus.


Subject(s)
Calcium/metabolism , Echinococcus granulosus/chemistry , Exocytosis , Phytic Acid/analogs & derivatives , 6-Phytase/metabolism , Animals , Cattle/parasitology , Cell Wall/ultrastructure , Echinococcosis/metabolism , Echinococcosis/parasitology , Echinococcosis/pathology , Echinococcus granulosus/growth & development , Helminth Proteins/analysis , Inositol Phosphates/chemistry , Inositol Phosphates/metabolism , Larva , Magnetic Resonance Spectroscopy , Mice/parasitology , Phosphorus/metabolism , Phytic Acid/metabolism , Phytic Acid/pharmacology
20.
Trends Parasitol ; 20(8): 363-9, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15246319

ABSTRACT

Trypanosoma cruzi invades a diversity of nucleated cells in the mammalian host. Macrophages are among the first cells to be parasitized and, after activation by inflammatory stimuli, they participate in the control of infection. However, some parasites manage to evade the immune response and establish a chronic infection in differentiated cells. L-arginine is located at the crossroads of divergent routes that produce metabolites, including nitric oxide and polyamines, which influence the outcome (i.e. resolution or progression) of infection. This article discusses the fate and actions of L-arginine-derived biomolecules formed both in the host and in the parasite during T. cruzi-host-cell interactions.


Subject(s)
Arginine/metabolism , Chagas Disease/metabolism , Trypanosoma cruzi/metabolism , Animals , Biogenic Polyamines/metabolism , Chagas Disease/parasitology , Host-Parasite Interactions/physiology , Humans , Macrophages/metabolism , Macrophages/parasitology , Nitric Oxide/metabolism , Trypanosoma cruzi/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...