Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Diabetes ; 73(9): 1447-1461, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38905124

ABSTRACT

Exocrine-to-endocrine cross talk in the pancreas is crucial to maintain ß-cell function. However, the molecular mechanisms underlying this cross talk are largely undefined. Trefoil factor 2 (Tff2) is a secreted factor known to promote the proliferation of ß-cells in vitro, but its physiological role in vivo in the pancreas is unknown. Also, it remains unclear which pancreatic cell type expresses Tff2 protein. We therefore created a mouse model with a conditional knockout of Tff2 in the murine pancreas. We find that the Tff2 protein is preferentially expressed in acinar but not ductal or endocrine cells. Tff2 deficiency in the pancreas reduces ß-cell mass on embryonic day 16.5. However, homozygous mutant mice are born without a reduction of ß-cells and with acinar Tff3 compensation by day 7. When mice are aged to 1 year, both male and female homozygous and male heterozygous mutants develop impaired glucose tolerance without affected insulin sensitivity. Perifusion analysis reveals that the second phase of glucose-stimulated insulin secretion from islets is reduced in aged homozygous mutant compared with controls. Collectively, these results demonstrate a previously unknown role of Tff2 as an exocrine acinar cell-derived protein required for maintaining functional endocrine ß-cells in mice.


Subject(s)
Acinar Cells , Aging , Insulin-Secreting Cells , Mice, Knockout , Trefoil Factor-2 , Animals , Insulin-Secreting Cells/metabolism , Mice , Trefoil Factor-2/metabolism , Trefoil Factor-2/genetics , Male , Acinar Cells/metabolism , Female , Aging/metabolism , Aging/physiology , Insulin/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Insulin Secretion/physiology , Insulin Secretion/genetics , Trefoil Factors/metabolism , Trefoil Factors/genetics , Peptides/metabolism
2.
bioRxiv ; 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37808670

ABSTRACT

Glucagon rapidly and profoundly simulates hepatic glucose production (HGP), but for reasons which are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course and relevance (to metabolic flux) of glucagon mediated molecular events in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a 6-fold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group glucose remained at basal while in the other glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) but only partially sustained increase in hepatic cAMP over 4h, a continued elevation in G6P, and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis and HGP increased rapidly, peaking at 30 min, then returned to baseline over the next 3h (although glucagons stimulatory effect on HGP was sustained relative to the hyperglycemic control group). Hepatic gluconeogenic flux did not increase due to lack of glucagon effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, and downregulation of genes involved in extracellular matrix assembly and development.

3.
bioRxiv ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37293034

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), and resultant non-alcoholic steatohepatitis (NASH), incidence and prevalence are rising globally due to increasing rates of obesity and diabetes. Currently, there are no approved pharmacological treatments for NAFLD, highlighting a need for additional mechanistic studies to develop prevention and/or therapeutic strategies. Diet-induced preclinical models of NAFLD can be used to examine the dynamic changes that occur during NAFLD development and progression throughout the lifespan. To date, most studies utilizing such models have focused exclusively on terminal time points and have likely missed critical early and late changes that are important for NAFLD progression (i.e, worsening). We performed a longitudinal analysis of histopathological, biochemical, transcriptomic, and microbiome changes that occurred in adult male mice fed either a control diet or a NASH-promoting diet (high in fat, fructose, and cholesterol) for up to 30 weeks. We observed progressive development of NAFLD in mice fed the NASH diet compared to the control diet. Differential expression of immune-related genes was observed at an early stage of diet-induced NAFLD development (10 weeks) and persisted into the later stages of the disease (20 and 30 weeks). Differential expression of xenobiotic metabolism related genes was observed at the late stage of diet-induced NAFLD development (30 weeks). Microbiome analysis revealed an increased abundance of Bacteroides at an early stage (10 weeks) that persisted into the later stages of the disease (20 and 30 weeks). These data provide insight into the progressive changes that occur during NAFLD/NASH development and progression in the context of a typical Western diet. Furthermore, these data are consistent with what has been reported in patients with NAFLD/NASH, supporting the preclinical use of this diet-induced model for development of strategies to prevent or treat the disease.

4.
bioRxiv ; 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37066233

ABSTRACT

This study investigated the effects of different multiple low doses of streptozotocin (STZ), namely 35 and 55 mg/kg, on the onset and progression of diabetes in mice. Both doses are commonly used in research, and while both induced a loss of beta cell mass, they had distinct effects on whole glucose tolerance, beta cell function and gene transcription. Mice treated with 55 mg/kg became rapidly glucose intolerant, whereas those treated with 35 mg/kg had a slower onset and remained glucose tolerant for up to a week before becoming equally glucose intolerant as the 55 mg/kg group. Beta cell mass loss was similar between the two groups, but the 35 mg/kg-treated mice had improved glucose-stimulated insulin secretion in gold-standard hyperglycemic clamp studies. Transcriptomic analysis revealed that the 55 mg/kg dose caused disruptions in nearly five times as many genes as the 35 mg/kg dose in isolated pancreatic islets. Pathways that were downregulated in both doses were more downregulated in the 55 mg/kg-treated mice, while pathways that were upregulated in both doses were more upregulated in the 35 mg/kg treated mice. Moreover, we observed a differential downregulation in the 55 mg/kg-treated islets of beta cell characteristic pathways, such as exocytosis or hormone secretion. On the other hand, apoptosis was differentially upregulated in 35 mg/kg-treated islets, suggesting different transcriptional mechanisms in the onset of STZ-induced damage in the islets. This study demonstrates that the two STZ doses induce distinctly mechanistic progressions for the loss of functional beta cell mass.

5.
bioRxiv ; 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37066257

ABSTRACT

Background: Maintaining functional beta cell mass (BCM) to meet glycemic demands is essential to preventing or reversing the progression of diabetes. Yet the mechanisms that establish and regulate endocrine cell fate are incompletely understood. We sought to determine the impact of deletion of mitogen-inducible gene 6 (Mig6), a negative feedback inhibitor of epidermal growth factor receptor (EGFR) signaling, on mouse endocrine cell fate. The extent to which loss of Mig6 might protect against loss of functional BCM in a multiple very low dose (MVLD) STZ-induced model of diabetes was also determined. Methods: Ten-week-old male mice with whole pancreas (Pdx1:Cre, PKO) and beta cell-specific (Ins1:Cre, BKO) knockout of Mig6 were used alongside control (CON) littermates. Mice were given MVLD STZ (35 mg/kg for five days) to damage beta cells and induce hyperglycemia. In vivo fasting blood glucose and glucose tolerance were used to assess beta cell function. Histological analyses of isolated pancreata were utilized to assess islet morphology and beta cell mass. We also identified histological markers of beta cell replication, dedifferentiation, and death. Isolated islets were used to reveal mRNA and protein markers of beta cell fate and function. Results: PKO mice had significantly increased alpha cell mass with no detectable changes to beta or delta cells. The increase in alpha cells alone did not impact glucose tolerance, BCM, or beta cell function. Following STZ treatment, PKO mice had 18±8% higher BCM than CON littermates and improved glucose tolerance. Interestingly, beta cell-specific loss of Mig6 was insufficient for protection, and BKO mice had no discernable differences compared to CON mice. The increase in BCM in PKO mice was the result of decreased beta cell loss and increased beta cell replication. Finally, STZ-treated PKO mice had more Ins+/Gcg+ bi-hormonal cells compared to controls suggesting alpha to beta cell transdifferentiation. Conclusions: Mig6 exerted differential effects on alpha and beta cell fate. Pancreatic loss of Mig6 reduced beta cell loss and promoted beta cell growth following STZ. Thus, suppression of Mig6 may provide relief of diabetes.

6.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834720

ABSTRACT

Avoiding the loss of functional beta cell mass is critical for preventing or treating diabetes. Currently, the molecular mechanisms underlying beta cell death are partially understood, and there is a need to identify new targets for developing novel therapeutics to treat diabetes. Previously, our group established that Mig6, an inhibitor of EGF signaling, mediates beta cell death under diabetogenic conditions. The objective here was to clarify the mechanisms linking diabetogenic stimuli to beta cell death by investigating Mig6-interacting proteins. Using co-immunoprecipitation and mass spectrometry, we evaluated the binding partners of Mig6 under both normal glucose (NG) and glucolipotoxic (GLT) conditions in beta cells. We identified that Mig6 interacted dynamically with NumbL, whereas Mig6 associated with NumbL under NG, and this interaction was disrupted under GLT conditions. Further, we demonstrated that the siRNA-mediated suppression of NumbL expression in beta cells prevented apoptosis under GLT conditions by blocking the activation of NF-κB signaling. Using co-immunoprecipitation experiments, we observed that NumbL's interactions with TRAF6, a key component of NFκB signaling, were increased under GLT conditions. The interactions among Mig6, NumbL, and TRAF6 were dynamic and context-dependent. We proposed a model wherein these interactions activated pro-apoptotic NF-κB signaling while blocking pro-survival EGF signaling under diabetogenic conditions, leading to beta cell apoptosis. These findings indicated that NumbL should be further investigated as a candidate anti-diabetic therapeutic target.


Subject(s)
Diabetes Mellitus , Insulin-Secreting Cells , Humans , NF-kappa B/metabolism , Epidermal Growth Factor/metabolism , Insulin-Secreting Cells/metabolism , TNF Receptor-Associated Factor 6/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , Diabetes Mellitus/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
7.
J Biol Chem ; 292(25): 10455-10464, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28483921

ABSTRACT

Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal.


Subject(s)
Cell Nucleus/metabolism , Fatty Liver/metabolism , Glycogen/deficiency , Hepatocytes/metabolism , Insulin Resistance , Signal Transduction , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Active Transport, Cell Nucleus/genetics , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cell Nucleus/genetics , Cell Nucleus/pathology , Fatty Liver/genetics , Fatty Liver/pathology , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Glycogen/genetics , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Hepatocytes/pathology , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Mice , Mice, Knockout , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
8.
J Appl Physiol (1985) ; 122(1): 96-103, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27932674

ABSTRACT

As metabolic changes in human skeletal muscle after long-term (simulated) spaceflight are not well understood, this study examined the effects of long-term microgravity, with and without concurrent resistance exercise, on skeletal muscle oxidative and glycolytic capacity. Twenty-one men were subjected to 84 days head-down tilt bed rest with (BRE; n = 9) or without (BR; n = 12) concurrent flywheel resistance exercise. Activity and gene expression of glycogen synthase, glycogen phosphorylase (GPh), hexokinase, phosphofructokinase-1 (PFK-1), and citrate synthase (CS), as well as gene expression of succinate dehydrogenase (SDH), vascular endothelial growth factor (VEFG), peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1α), and myostatin, were analyzed in samples from m. vastus lateralis collected before and after bed rest. Activity and gene expression of enzymes controlling oxidative metabolism (CS, SDH) decreased in BR but were partially maintained in BRE. Activity of enzymes regulating anaerobic glycolysis (GPh, PFK-1) was unchanged in BR. Resistance exercise increased the activity of GPh. PGC-1α and VEGF expression decreased in both BR and BRE. Myostatin increased in BR but decreased in BRE after bed rest. The analyses of these unique samples indicate that long-term microgravity induces marked alterations in the oxidative, but not the glycolytic, energy system. The proposed flywheel resistance exercise was effective in counteracting some of the metabolic alterations triggered by 84-day bed rest. Given the disparity between gene expression vs. enzyme activity in several key metabolic markers, posttranscriptional mechanisms should be explored to fully evaluate metabolic adaptations to long-term microgravity with/without exercise countermeasures in human skeletal muscle.


Subject(s)
Adaptation, Physiological/physiology , Exercise/physiology , Metabolome/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Acclimatization/physiology , Adult , Bed Rest/methods , Gene Expression/physiology , Glycolysis/physiology , Head-Down Tilt/physiology , Humans , Male , Space Flight/methods , Weightlessness , Weightlessness Simulation/methods
9.
PLoS One ; 11(8): e0161341, 2016.
Article in English | MEDLINE | ID: mdl-27574973

ABSTRACT

Mutations in the ferritin light chain (FTL) gene cause the neurodegenerative disease neuroferritinopathy or hereditary ferritinopathy (HF). HF is characterized by a severe movement disorder and by the presence of nuclear and cytoplasmic iron-containing ferritin inclusion bodies (IBs) in glia and neurons throughout the central nervous system (CNS) and in tissues of multiple organ systems. Herein, using primary mouse embryonic fibroblasts from a mouse model of HF, we show significant intracellular accumulation of ferritin and an increase in susceptibility to oxidative damage when cells are exposed to iron. Treatment of the cells with the iron chelator deferiprone (DFP) led to a significant improvement in cell viability and a decrease in iron content. In vivo, iron overload and DFP treatment of the mouse model had remarkable effects on systemic iron homeostasis and ferritin deposition, without significantly affecting CNS pathology. Our study highlights the role of iron in modulating ferritin aggregation in vivo in the disease HF. It also puts emphasis on the potential usefulness of a therapy based on chelators that can target the CNS to remove and redistribute iron and to resolubilize or prevent ferritin aggregation while maintaining normal systemic iron stores.


Subject(s)
Apoferritins/metabolism , Fibroblasts/drug effects , Iron Chelating Agents/administration & dosage , Iron Metabolism Disorders/drug therapy , Iron Overload/drug therapy , Neuroaxonal Dystrophies/drug therapy , Pyridones/administration & dosage , Animals , Cell Survival , Cells, Cultured , Chelation Therapy , Deferiprone , Disease Models, Animal , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Iron/adverse effects , Iron Chelating Agents/pharmacology , Iron Metabolism Disorders/metabolism , Iron Overload/metabolism , Male , Mice , Neuroaxonal Dystrophies/metabolism , Oxidative Stress/drug effects , Pyridones/pharmacology
10.
J Biol Chem ; 290(37): 22686-98, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26216881

ABSTRACT

Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease.


Subject(s)
Dual-Specificity Phosphatases/metabolism , Glycogen/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Animals , Dual-Specificity Phosphatases/genetics , Glycogen/genetics , Lafora Disease/genetics , Lafora Disease/metabolism , Lafora Disease/pathology , Mice , Mice, Knockout , Muscle, Skeletal/pathology , Phosphorylation/genetics , Protein Tyrosine Phosphatases, Non-Receptor
11.
Aviat Space Environ Med ; 85(7): 694-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25022156

ABSTRACT

BACKGROUND: As spaceflight compromises skeletal muscle oxidative and aerobic work capacity, this study assessed the efficacy of resistance exercise (RE) to counteract muscle metabolic perturbations induced by 5 wk unilateral lower limb unloading (UL). METHODS: There were 21 men and women (30-56 yr) who were randomly assigned to either UL with (Group, Grp; UL+RE; N = 10) or without (Grp UL; N = 11) concurrent RE. Iso-inertial RE comprised four sets of seven maximal coupled concentric-eccentric knee extensions executed 2-3 times per week. Percutaneous biopsies were obtained from m. vastus lateralis before and after either intervention. Levels of mRNA expression of factors regulating skeletal muscle oxidative capacity i.e., peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1alpha) and vascular endothelial growth factor (VEGF), and glycolytic capacity, i.e., phosphofructokinase (PFK), glycogen phosphorylase and synthase, hexokinase, and phosphorylase kinase alpha1, were subsequently analyzed. RESULTS: Grp UL showed decreased (36%) PGC-1alpha expression, increased (1.5-fold) PFK expression, and a trend toward decreased VEGF post-intervention. Grp UL+RE showed no changes. DISCUSSION: These results suggest that 5 wk unloading reduces skeletal muscle oxidative capacity and increases glycolytic enzyme activity. More importantly, only 12 bouts of high-force, low-volume resistance exercise attenuated these responses. Thus, the current resistance exercise paradigm emphasizing eccentric overload effectively counteracts unwarranted metabolic alterations induced by 5 wk unloading and may, therefore, aid in maintaining skeletal muscle integrity and endurance, and hence astronaut health and fitness during spaceflight.


Subject(s)
Gene Expression Regulation , Muscle, Skeletal/metabolism , Resistance Training , Weightlessness Simulation , Adult , Analysis of Variance , Biopsy, Needle , Female , Glycogen Phosphorylase/genetics , Glycogen Phosphorylase/metabolism , Glycogen Synthase/genetics , Glycogen Synthase/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Humans , Lower Extremity , Male , Middle Aged , Muscle, Skeletal/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphofructokinases/genetics , Phosphofructokinases/metabolism , Phosphorylase Kinase/genetics , Phosphorylase Kinase/metabolism , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
12.
Am J Physiol Endocrinol Metab ; 307(2): E151-60, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24865981

ABSTRACT

In dogs consuming a high-fat and -fructose diet (52 and 17% of total energy, respectively) for 4 wk, hepatic glucose uptake (HGU) in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery is markedly blunted with reduction in glucokinase (GK) protein and glycogen synthase (GS) activity. The present study compared the impact of selective increases in dietary fat and fructose on liver glucose metabolism. Dogs consumed weight-maintaining chow (CTR) or hypercaloric high-fat (HFA) or high-fructose (HFR) diets diet for 4 wk before undergoing clamp studies with infusion of somatostatin and intraportal insulin (3-4 times basal) and glucagon (basal). The hepatic glucose load (HGL) was doubled during the clamp using peripheral vein (Pe) glucose infusion in the first 90 min (P1) and portal vein (4 mg·kg(-1)·min(-1)) plus Pe glucose infusion during the final 90 min (P2). During P2, HGU was 2.8 ± 0.2, 1.0 ± 0.2, and 0.8 ± 0.2 mg·kg(-1)·min(-1) in CTR, HFA, and HFR, respectively (P < 0.05 for HFA and HFR vs. CTR). Compared with CTR, hepatic GK protein and catalytic activity were reduced (P < 0.05) 35 and 56%, respectively, in HFA, and 53 and 74%, respectively, in HFR. Liver glycogen concentrations were 20 and 38% lower in HFA and HFR than CTR (P < 0.05). Hepatic Akt phosphorylation was decreased (P < 0.05) in HFA (21%) but not HFR. Thus, HFR impaired hepatic GK and glycogen more than HFA, whereas HFA reduced insulin signaling more than HFR. HFA and HFR effects were not additive, suggesting that they act via the same mechanism or their effects converge at a saturable step.


Subject(s)
Diet, High-Fat , Dietary Fats/pharmacology , Fructose/pharmacology , Glucose/metabolism , Liver/drug effects , Liver/metabolism , Animals , Blood Glucose/metabolism , Diet, High-Fat/veterinary , Dietary Carbohydrates/pharmacology , Dogs , Glucokinase/metabolism , Glycerol/metabolism , Lactic Acid/metabolism , Male , Triglycerides/metabolism
13.
Diabetes ; 62(2): 392-400, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23028137

ABSTRACT

The cellular events mediating the pleiotropic actions of portal vein glucose (PoG) delivery on hepatic glucose disposition have not been clearly defined. Likewise, the molecular defects associated with postprandial hyperglycemia and impaired hepatic glucose uptake (HGU) following consumption of a high-fat, high-fructose diet (HFFD) are unknown. Our goal was to identify hepatocellular changes elicited by hyperinsulinemia, hyperglycemia, and PoG signaling in normal chow-fed (CTR) and HFFD-fed dogs. In CTR dogs, we demonstrated that PoG infusion in the presence of hyperinsulinemia and hyperglycemia triggered an increase in the activity of hepatic glucokinase (GK) and glycogen synthase (GS), which occurred in association with further augmentation in HGU and glycogen synthesis (GSYN) in vivo. In contrast, 4 weeks of HFFD feeding markedly reduced GK protein content and impaired the activation of GS in association with diminished HGU and GSYN in vivo. Furthermore, the enzymatic changes associated with PoG sensing in chow-fed animals were abolished in HFFD-fed animals, consistent with loss of the stimulatory effects of PoG delivery. These data reveal new insight into the molecular physiology of the portal glucose signaling mechanism under normal conditions and to the pathophysiology of aberrant postprandial hepatic glucose disposition evident under a diet-induced glucose-intolerant condition.


Subject(s)
Diet, High-Fat/adverse effects , Fructose/adverse effects , Glucose/metabolism , Liver/metabolism , Portal Vein/physiology , Animals , Dogs , Fructose/administration & dosage , Glucokinase/analysis , Glucokinase/metabolism , Glucose/administration & dosage , Glucose Intolerance/etiology , Glycogen Synthase/metabolism , Hyperglycemia/etiology , Hyperglycemia/metabolism , Hyperinsulinism/etiology , Liver/enzymology , Liver Glycogen/biosynthesis , Male , Signal Transduction/physiology
14.
Diabetes ; 62(3): 753-61, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23223020

ABSTRACT

Net hepatic glucose uptake (NHGU) is an important contributor to postprandial glycemic control. We hypothesized that NHGU is reduced during normal pregnancy and in a pregnant diet-induced model of impaired glucose intolerance/gestational diabetes mellitus (IGT/GDM). Dogs (n = 7 per group) that were nonpregnant (N), normal pregnant (P), or pregnant with IGT/GDM (pregnant dogs fed a high-fat and -fructose diet [P-HFF]) underwent a hyperinsulinemic-hyperglycemic clamp with intraportal glucose infusion. Clamp period insulin, glucagon, and glucose concentrations and hepatic glucose loads did not differ among groups. The N dogs reached near-maximal NHGU rates within 30 min; mean ± SEM NHGU was 105 ± 9 µmol·100 g liver⁻¹·min⁻¹. The P and P-HFF dogs reached maximal NHGU in 90-120 min; their NHGU was blunted (68 ± 9 and 16 ± 17 µmol·100 g liver⁻¹·min⁻¹, respectively). Hepatic glycogen synthesis was reduced 20% in P versus N and 40% in P-HFF versus P dogs. This was associated with a reduction (>70%) in glycogen synthase activity in P-HFF versus P and increased glycogen phosphorylase (GP) activity in both P (1.7-fold greater than N) and P-HFF (1.8-fold greater than P) dogs. Thus, NHGU under conditions mimicking the postprandial state is delayed and suppressed in normal pregnancy, with concomitant reduction in glycogen storage. NHGU is further blunted in IGT/GDM. This likely contributes to postprandial hyperglycemia during pregnancy, with potential adverse outcomes for the fetus and mother.


Subject(s)
Diabetes, Gestational/metabolism , Disease Models, Animal , Down-Regulation , Glucose Intolerance/metabolism , Insulin Resistance , Liver Glycogen , Liver/metabolism , Animals , Diabetes, Gestational/blood , Diabetes, Gestational/physiopathology , Diet, High-Fat/adverse effects , Dogs , Female , Fructose/adverse effects , Glucokinase/metabolism , Glucose/metabolism , Glucose Intolerance/blood , Glucose Intolerance/physiopathology , Glycogen Phosphorylase, Liver Form/metabolism , Glycogen Synthase/metabolism , Hyperglycemia/etiology , Liver/enzymology , Maternal Nutritional Physiological Phenomena , Postprandial Period , Pregnancy
15.
Diabetes ; 62(1): 96-101, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22923473

ABSTRACT

The purpose of this study was to determine the effect of liver glycogen loading on net hepatic glycogen synthesis during hyperinsulinemia or hepatic portal vein glucose infusion in vivo. Liver glycogen levels were supercompensated (SCGly) in two groups (using intraportal fructose infusion) but not in two others (Gly) during hyperglycemic-normoinsulinemia. Following a 2-h control period during which fructose infusion was stopped, there was a 2-h experimental period in which the response to hyperglycemia plus either 4× basal insulin (INS) or portal vein glucose infusion (PoG) was measured. Increased hepatic glycogen reduced the percent of glucose taken up by the liver that was deposited in glycogen (74 ± 3 vs. 53 ± 5% in Gly+INS and SCGly+INS, respectively, and 72 ± 3 vs. 50 ± 6% in Gly+PoG and SCGly+PoG, respectively). The reduction in liver glycogen synthesis in SCGly+INS was accompanied by a decrease in both insulin signaling and an increase in AMPK activation, whereas only the latter was observed in SCGly+PoG. These data indicate that liver glycogen loading impairs glycogen synthesis regardless of the signal used to stimulate it.


Subject(s)
Glucose/metabolism , Hyperinsulinism/metabolism , Liver Glycogen/biosynthesis , AMP-Activated Protein Kinases/metabolism , Animals , Dogs , Liver/metabolism , Portal Vein/metabolism
16.
PLoS One ; 7(7): e42453, 2012.
Article in English | MEDLINE | ID: mdl-22860128

ABSTRACT

BACKGROUND: Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood. METHODS: Using chronic low-frequency stimulation (CLFS) as an exercise model, the tibialis anterior muscle of rabbits was stimulated for either 1 or 24 hours, inducing a reduction in glycogen of 90% and 50% respectively. Glycogen recovery was subsequently monitored during 24 hours of rest. RESULTS: In muscles stimulated for 1 hour, glycogen recovered basal levels during the rest period. However, in those stimulated for 24 hours, glycogen was supercompensated and its levels remained 50% higher than basal levels after 6 hours of rest, although the newly synthesized glycogen had fewer branches. This increase in glycogen correlated with an increase in hexokinase-2 expression and activity, a reduction in the glycogen phosphorylase activity ratio and an increase in the glycogen synthase activity ratio, due to dephosphorylation of site 3a, even in the presence of elevated glycogen stores. During supercompensation there was also an increase in 5'-AMP-activated protein kinase phosphorylation, correlating with a stable reduction in ATP and total purine nucleotide levels. CONCLUSIONS: Glycogen supercompensation requires a coordinated chain of events at two levels in the context of decreased cell energy balance: First, an increase in the glucose phosphorylation capacity of the muscle and secondly, control of the enzymes directly involved in the synthesis and degradation of the glycogen molecule. However, supercompensated glycogen has fewer branches.


Subject(s)
Glycogen Synthase/metabolism , Glycogen/metabolism , Hexokinase/metabolism , Muscle, Skeletal/metabolism , Phosphorylases/metabolism , Animals , Muscle, Skeletal/enzymology , Rabbits
17.
Diabetes ; 61(10): 2433-41, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22688328

ABSTRACT

We previously showed that hepatic nitric oxide regulates net hepatic glucose uptake (NHGU), an effect that can be eliminated by inhibiting hepatic soluble guanylate cyclase (sGC), suggesting that the sGC pathway is involved in the regulation of NHGU. The aim of the current study was to determine whether hepatic cyclic guanosine monophosphate (cGMP) reduces NHGU. Studies were performed on conscious dogs with transhepatic catheters. A hyperglycemic-hyperinsulinemic clamp was established in the presence of portal vein glucose infusion. 8-Br-cGMP (50 µg/kg/min) was delivered intraportally, and either the glucose load to the liver (CGMP/GLC; n = 5) or the glucose concentration entering the liver (CGMP/GCC; n = 5) was clamped at 2× basal. In the control group, saline was given intraportally (SAL; n = 10), and the hepatic glucose concentration and load were doubled. 8-Br-cGMP increased portal blood flow, necessitating the two approaches to glucose clamping in the cGMP groups. NHGU (mg/kg/min) was 5.8 ± 0.5, 2.7 ± 0.5, and 4.8 ± 0.3, whereas the fractional extraction of glucose was 11.0 ± 1, 5.5 ± 1, and 8.5 ± 1% during the last hour of the study in SAL, CGMP/GLC, and CGMP/GCC, respectively. The reduction of NHGU in response to 8-Br-cGMP was associated with increased AMP-activated protein kinase phosphorylation. These data indicate that changes in liver cGMP can regulate NHGU under postprandial conditions.


Subject(s)
Cyclic GMP/metabolism , Glucose/metabolism , Liver/metabolism , Signal Transduction/physiology , Animals , Blood Pressure/physiology , Cyclic AMP/metabolism , Dogs , Glucagon/metabolism , Glycogen Phosphorylase/metabolism , Glycogen Synthase/metabolism , Insulin/metabolism , Insulin/pharmacology , Liver/blood supply , Portal Vein/metabolism
18.
Diabetes ; 60(2): 398-407, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21270252

ABSTRACT

OBJECTIVE: The objective of this study was to determine how increasing the hepatic glycogen content would affect the liver's ability to take up and metabolize glucose. RESEARCH DESIGN AND METHODS: During the first 4 h of the study, liver glycogen deposition was stimulated by intraportal fructose infusion in the presence of hyperglycemic-normoinsulinemia. This was followed by a 2-h hyperglycemic-normoinsulinemic control period, during which the fructose infusion was stopped, and a 2-h experimental period in which net hepatic glucose uptake (NHGU) and disposition (glycogen, lactate, and CO(2)) were measured in the absence of fructose but in the presence of a hyperglycemic-hyperinsulinemic challenge including portal vein glucose infusion. RESULTS: Fructose infusion increased net hepatic glycogen synthesis (0.7 ± 0.5 vs. 6.4 ± 0.4 mg/kg/min; P < 0.001), causing a large difference in hepatic glycogen content (62 ± 9 vs. 100 ± 3 mg/g; P < 0.001). Hepatic glycogen supercompensation (fructose infusion group) did not alter NHGU, but it reduced the percent of NHGU directed to glycogen (79 ± 4 vs. 55 ± 6; P < 0.01) and increased the percent directed to lactate (12 ± 3 vs. 29 ± 5; P = 0.01) and oxidation (9 ± 3 vs. 16 ± 3; P = NS). This change was associated with increased AMP-activated protein kinase phosphorylation, diminished insulin signaling, and a shift in glycogenic enzyme activity toward a state discouraging glycogen accumulation. CONCLUSIONS: These data indicate that increases in hepatic glycogen can generate a state of hepatic insulin resistance, which is characterized by impaired glycogen synthesis despite preserved NHGU.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Insulin/metabolism , Liver Glycogen/metabolism , Liver/metabolism , Analysis of Variance , Animals , Blood Glucose , Blotting, Western , Dogs , Fatty Acids, Nonesterified/blood , Female , Fructose/metabolism , Fructose/pharmacology , Glucagon/metabolism , Liver/drug effects , Male , Portal Vein/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology
19.
J Clin Invest ; 120(12): 4425-35, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21084754

ABSTRACT

In individuals with type 1 diabetes, hypoglycemia is a common consequence of overinsulinization. Under conditions of insulin-induced hypoglycemia, glucagon is the most important stimulus for hepatic glucose production. In contrast, during euglycemia, insulin potently inhibits glucagon's effect on the liver. The first aim of the present study was to determine whether low blood sugar augments glucagon's ability to increase glucose production. Using a conscious catheterized dog model, we found that hypoglycemia increased glucagon's ability to overcome the inhibitory effect of insulin on hepatic glucose production by almost 3-fold, an effect exclusively attributable to marked enhancement of the effect of glucagon on net glycogen breakdown. To investigate the molecular mechanism by which this effect comes about, we analyzed hepatic biopsies from the same animals, and found that hypoglycemia resulted in a decrease in insulin signaling. Furthermore, hypoglycemia and glucagon had an additive effect on the activation of AMPK, which was associated with altered activity of the enzymes of glycogen metabolism.


Subject(s)
Glucagon/pharmacology , Hypoglycemia/metabolism , Insulin/adverse effects , Liver/drug effects , Liver/metabolism , 3-Hydroxybutyric Acid/blood , AMP-Activated Protein Kinases/metabolism , Animals , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Disease Models, Animal , Dogs , Enzyme Activation/drug effects , Fatty Acids, Nonesterified/blood , Female , Gluconeogenesis/drug effects , Glycogenolysis/drug effects , Humans , Hypoglycemia/chemically induced , Insulin/metabolism , Liver Glycogen/metabolism , Male , Signal Transduction
20.
J Biol Chem ; 285(45): 34960-71, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-20810658

ABSTRACT

Stbd1 is a protein of previously unknown function that is most prevalent in liver and muscle, the major sites for storage of the energy reserve glycogen. The protein is predicted to contain a hydrophobic N terminus and a C-terminal CBM20 glycan binding domain. Here, we show that Stbd1 binds to glycogen in vitro and that endogenous Stbd1 locates to perinuclear compartments in cultured mouse FL83B or Rat1 cells. When overexpressed in COSM9 cells, Stbd1 concentrated at enlarged perinuclear structures, co-localized with glycogen, the late endosomal/lysosomal marker LAMP1 and the autophagy protein GABARAPL1. Mutant Stbd1 lacking the N-terminal hydrophobic segment had a diffuse distribution throughout the cell. Point mutations in the CBM20 domain did not change the perinuclear localization of Stbd1, but glycogen was no longer concentrated in this compartment. Stable overexpression of glycogen synthase in Rat1WT4 cells resulted in accumulation of glycogen as massive perinuclear deposits, where a large fraction of the detectable Stbd1 co-localized. Starvation of Rat1WT4 cells for glucose resulted in dissipation of the massive glycogen stores into numerous and much smaller glycogen deposits that retained Stbd1. In vitro, in cells, and in animal models, Stbd1 consistently tracked with glycogen. We conclude that Stbd1 is involved in glycogen metabolism by binding to glycogen and anchoring it to membranes, thereby affecting its cellular localization and its intracellular trafficking to lysosomes.


Subject(s)
Glycogen/metabolism , Membrane Proteins/metabolism , Animals , Autophagy-Related Protein 8 Family , COS Cells , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chlorocebus aethiops , Glycogen/genetics , Intracellular Signaling Peptides and Proteins , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Point Mutation , Protein Structure, Tertiary , Rats
SELECTION OF CITATIONS
SEARCH DETAIL