Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Geoderma ; 443: 116831, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38533356

ABSTRACT

Soils are a major player in the global carbon (C) cycle and climate change by functioning as a sink or a source of atmospheric carbon dioxide (CO2). The largest terrestrial C reservoir in soils comprises two main pools: organic (SOC) and inorganic C (SIC), each having distinct fates and functions but with a large disparity in global research attention. This study quantified global soil C research trends and the proportional focus on SOC and SIC pools based on a bibliometric analysis and raise the importance of SIC pools fully underrepresented in research, applications, and modeling. Studies on soil C pools started in 1905 and has produced over 47,000 publications (>1.7 million citations). Although the global C stocks down to 2 m depth are nearly the same for SOC and SIC, the research has dominantly examined SOC (>96 % of publications and citations) with a minimal share on SIC (<4%). Approximately 40 % of the soil C research was related to climate change. Despite poor coverage and publications, the climate change-related research impact (citations per document) of SIC studies was higher than that of SOC. Mineral associated organic carbon, machine learning, soil health, and biochar were the recent top trend topics for SOC research (2020-2023), whereas digital soil mapping, soil properties, soil acidification, and calcite were recent top trend topics for SIC. SOC research was contributed by 151 countries compared to 88 for SIC. As assessed by publications, soil C research was mainly concentrated in a few countries, with only 9 countries accounting for 70 % of the research. China and the USA were the major producers (45 %), collaborators (37 %), and funders of soil C research. SIC is a long-lived soil C pool with a turnover rate (leaching and recrystallization) of more than 1000 years in natural ecosystems, but intensive agricultural practices have accelerated SIC losses, making SIC an important player in global C cycle and climate change. The lack of attention and investment towards SIC research could jeopardize the ongoing efforts to mitigate climate change impacts to meet the 1.5-2.0 °C targets under the Paris Climate Agreement of 2015. This bibliographic study calls to expand the research focus on SIC and including SIC fluxes in C budgets and models, without which the representation of the global C cycle is incomplete.

2.
Microbiol Res ; 273: 127398, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37167733

ABSTRACT

Drought is the most destructive abiotic stress and negatively affects crop growth and productivity. Modern breeding efforts have produced numerous cultivars with distinct genetic traits that improve crop growth and drought stress tolerance. Arbuscular mycorrhizal fungi (AMF) can enhance drought tolerance in soybean plants by directly providing nutrients to plants, promoting photosynthesis, or influencing interspecific plant interactions in natural communities. However, the interactions between AMF and wild and transgenic soybean genotypes remain unclear. Therefore, in the present study, we evaluated the effect of arbuscular mycorrhizal fungi on the growth performance of drought-stressed transgenic soybean lines (ZXOE-11 and ZXOE-13) overexpressing GmSPL9d gene and their wild soybean Tianlong 1 (TL1) at the seedling stage (45 d after sowing). The results showed that colonization of wild and transgenic soybean with Rhizophagus irregularis significantly decreased the adverse effects of drought on plant growth. AMF inoculation significantly increased plant biomass, root activity, chlorophyll metabolism, photosynthesis, and chlorophyll fluorescence in wild-type and transgenic plants under both control and drought stress conditions. Drought causes the production of ROS, such as hydrogen peroxide, which enhances MDA, thereby decreasing the membrane stability index (MSI). However, AMF-inoculated plants exhibited decreased ROS accumulation and increased MSI. Moreover, AMF treatment significantly improved osmolyte, nitrogen, and nitrate reductase activity under control and drought conditions, which increased the relative water content. Furthermore, AMF treatment enhanced the antioxidant systems of drought-stressed plants by increasing the activities of peroxidase, superoxide dismutase, catalase, and ascorbate peroxidase. AMF improved the growth performance, photosynthesis, and antioxidant activity of transgenic plants under drought stress conditions. The present findings indicate that the AMF contribution to soybean seedling drought tolerance was more significant for the transgenic plants than for the wild plants under drought conditions. The current findings emphasize the possibility of growth and photosynthetic variation in the degree of AMF-associated drought resistance in soybean plants. Our findings suggest that future crop breeding challenges include developing cultivars for sustainable production and maximizing crop cultivar and fungal species (AMF) combinations in drought-stressed regions.


Subject(s)
Mycorrhizae , Mycorrhizae/metabolism , Antioxidants/metabolism , Glycine max , Droughts , Reactive Oxygen Species/metabolism , Photosynthesis/physiology , Chlorophyll/metabolism
3.
J Hazard Mater ; 443(Pt B): 130309, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36356523

ABSTRACT

Eco-toxicological estimation of cadmium induced damages by morpho-physiological and cellular response could be an insightful strategy to alleviate negative impact of Cd in agricultural crops. The current study revealed novel patterns of Cd-bioaccumulation and cellular mechanism opted by alfalfa to acquire Cd tolerance under various soil applied zinc oxide nanoparticles (nZnO) doses (0, 30, 60, 90 mg kg-1), combined with 2% biochar (BC). Herein, the potential impact of these soil amendments was justified by decreased Cd and increased Zn-bioaccumulation into roots by 38 % and 48 % and shoots by 51 % and 72 % respectively, with co-exposure of nZnO with BC. As, the transmission electron microscopy (TEM) and scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) ultrastructural observations confirmed that Cd-exposure induced stomatal closure, and caused damage to roots and leaves ultrastructure as compared to the control group. On the contrary, the damages to the above-mentioned traits were reversed by a higher nZnO dose, and the impact was further aggravated by adding BC along nZnO. Furthermore, higher nZnO and BC levels efficiently alleviated the Cd-mediated reductions in alfalfa biomass, antioxidant enzymatic response, and gaseous exchange traits than control. Overall, soil application of 90 mg kg-1 nZnO with BC (2 %) was impactful in averting Cd stress damages and ensuring better plant performance. Thereby, applying soil nZnO and BC emerge as promising green remediation techniques to enhance crop tolerance in Cd-polluted soil.


Subject(s)
Soil Pollutants , Zinc Oxide , Cadmium/chemistry , Medicago sativa , Zinc Oxide/toxicity , Zinc Oxide/chemistry , Soil Pollutants/analysis , Soil/chemistry
4.
Environ Pollut ; 303: 119069, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35276246

ABSTRACT

Global efforts are in rapid progress to tackle the emerging conundrum of climate change-induced heat stress in grassland ecosystems. Zinc oxide nanoparticles (n-ZnO) are known to play a crucial role in plants' abiotic stress regulation, but its response in alfalfa against heat stress has not been explored. This study aimed at assessing the effects of n-ZnO on alfalfa under heat stress by various morpho-physiological and cellular approaches. Five-week-old alfalfa seedlings were subjected to foliar application of n-ZnO as a pretreatment before the onset of heat stress (BHS) to evaluate its effect on heat tolerance, and as a post-treatment after heat stress (AHS) to evaluate recovery efficiency. In vitro studies on Zn release from n-ZnO by Inductively coupled plasma mass spectroscopy (ICPMS) disclosed that the particle uptake and Zn release were concentration dependent. The uptake and translocation of n-ZnO examined by transmission electron microscope (TEM) reveling showed that n-ZnO was primarily localized in the vacuoles and chloroplasts. TEM images showed that ultrastructural modifications to chloroplast, mitochondria, and cell wall were reversible by highest dose of n-ZnO applied before heat stress, and damages to these organelles were not recoverable when n-ZnO was applied after heat stress. The results further enlightened that 90 mg L-1 n-ZnO better prevented the heat stress-mediated membrane damage, lipid peroxidation and oxidative stress by stimulating antioxidant systems and enhancing osmolyte contents in both BHS and AHS. Although, application of 90 mg L-1 n-ZnO in BHS was more effective in averting heat-induced damages and maintaining better plant growth and morpho-physiological attributes compared to AHS. Conclusively, foliar application of n-ZnO can be encouraged as an effective strategy to protect alfalfa from heat stress damages while minimizing the risk of nanoparticle transmission to environmental compartments, which could happen with soil application.


Subject(s)
Nanoparticles , Zinc Oxide , Antioxidants/metabolism , Ecosystem , Medicago sativa , Seedlings , Zinc Oxide/chemistry , Zinc Oxide/toxicity
5.
Ecotoxicol Environ Saf ; 226: 112816, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34597844

ABSTRACT

Cold stress is an adverse environmental condition that limits the growth and yield of leguminous plants. Thus, discovering an effective way of ameliorating cold-mediated damage is important for sustainable legume production. In this study, the combined use of Rhizobium inoculation (RI) and melatonin (MT) pretreatment was investigated in Medicago truncatula plants under cold stress. Eight-week-old seedlings were divided into eight groups: (i) CK (no stress, noninoculated, no MT), (ii) RI (Rhizobium inoculated), (iii) MT (75 µM melatonin), (iv) RI+MT, (v) CS (cold stress at 4 °C without Rhizobium inoculation and melatonin), (vi) CS+RI, (vii) CS+MT, and (viii) CS+RI+MT. Plants were exposed to cold stress for 24 hrs. Cold stress decreased photosynthetic pigments and increased oxidative stress. Pretreatment with RI and MT alone or combined significantly improved root activity and plant biomass production under cold stress. Interestingly, chlorophyll contents increased by 242.81% and MDA levels dramatically decreased by 34.22% in the CS+RI+MT treatment compared to the CS treatment. Moreover, RI+MT pretreatment improved the antioxidative ability by increasing the activities of peroxidase (POD; 8.45%), superoxide dismutase (SOD; 50.36%), catalase (CAT; 140.26%), and ascorbate peroxidase (APX; 42.63%) over CS treated plants. Additionally, increased osmolyte accumulation, nutrient uptake, and nitrate reductase activity due to the combined use of RI and MT helped the plants counteract cold-mediated damage by strengthening the nonenzymatic antioxidant system. These data indicate that pretreatment with a combined application of RI and MT can attenuate cold damage by enhancing the antioxidation ability of legumes.


Subject(s)
Medicago truncatula , Melatonin , Rhizobium , Antioxidants , Cold-Shock Response , Melatonin/pharmacology , Oxidative Stress , Seedlings
SELECTION OF CITATIONS
SEARCH DETAIL