Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Saudi Pharm J ; 31(9): 101697, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37559864

ABSTRACT

The aim of this study is to formulate polymeric paclitaxel nanoparticles with various stabilizers to improve solubility, enhance stability, maximize therapeutic efficacy and minimize detrimental toxicities of paclitaxel. In this study, trastuzumab-guided poly lactic-co-glycolic acid (PLGA)-loaded paclitaxel nanoparticles were formulated with pluronic F-127, polyvinyl alcohol (PVA), poloxamer 407, Tween-80, span 20, sodium dodecyl sulfate (SDS), and sodium lauryl sulfate (SLS) at different concentrations (0.5, 1, 1.5 and 2%) using the solvent evaporation method. The nanoparticles were evaluated for physicochemical characteristics and short and long-term stability. The optimum particle size (190 nm ± 12.42 to 350 nm ± 11.1), PDI (0.13 ± 0.02 to 0.2 ± 0.01), surface charge (-19.1mv ± 1.5 to -40.4mv ± 1.6), drug loading (2.43 to 9.5 %) and encapsulation efficiency (greater than 80 %) were obtained with these stabilizers while keeping the polymer concentration, temperature, probe size, amplitude and sonication time constant. The nanoformulations were stably stored at 4 °C. The nanoformulations of paclitaxel with pluronic F-127, polyvinyl alcohol (PVA), and poloxamer 407 were found to be more soluble, stable, uniform in physicochemical properties, and efficient in drug loading and encapsulation for improved therapeutic effects.

2.
ACS Omega ; 8(33): 30221-30230, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636925

ABSTRACT

Biogenic synthesis of silver nanoparticles (AgNPs) using plant extracts is gaining attention as a substitute to the conventional physical and chemical synthesis methods. This study reports a facile, cost-effective, and ecofriendly synthesis of AgNPs using leaf extract of Alnus nitida (A. nitida) and their antioxidant and antiproliferative activities. The biosynthesized AgNPs were characterized using various analytical techniques including UV-visible spectroscopy, energy-dispersive spectrometry, scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and dynamic light scattering. The antioxidant and cytotoxic potential of the extract and AgNPs was evaluated using different in vitro models. The UV-vis analysis revealed a surface plasmon resonance peak of 400 nm corresponding to the synthesis of AgNPs. SEM analysis confirmed the formation of heterogeneously dispersed particles of nano size, while the XRD and FTIR spectra confirmed the crystallinity and existence of different functional groups that helped in capping and stability of AgNPs. The antioxidant activity of AgNPs and extract, studied by 1,1-diphenyl 2-picryl hydrazyl (DPPH), fluorescence recovery after photobleaching (FRAP), 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and H2O2 scavenging assays, showed a dose-dependent effect. The AgNPs at 1000 µg/mL significantly scavenged DPPH, FRAP, ABTS, and H2O2 by 66.45, 74.65, 78.81, and 72.56% with an average IC50 value of 33.31, 18.50, 16.46, and 15.65 µg/mL, respectively. The cytotoxic potential investigated by MTT assay revealed promising antiproliferative effects against different cancer cell lines. The IC50 values of AgNPs on MDA-MB-231, A549, and Hep-G2 cells were 14.88, 3.6, and 5.38 µg/mL, respectively. The results showed that AgNPs were more effective against lung and hepatocellular carcinoma. The selectivity index showed that AgNPs remained highly selective in retarding the growth of A549 and Hep-G2 cells as compared to normal cell lines HPAEpiC and HRPTEpiC. Overall, this study showed that biosynthesized AgNPs were associated with considerable antioxidant and cytotoxic effects. Our work suggests that A. nitida-mediated AgNPs should be evaluated further in order to develop safe and effective formulations for the treatment of different degenerative diseases.

3.
Int Immunopharmacol ; 110: 108970, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35792271

ABSTRACT

Tannic acid (TA) is a natural compound present abundantly in fruit such as grapes and green tea. In this study, we have evaluated the therapeutic efficacy of TA against Lipopolysaccharide (LPS)-induced oxidative stress-mediated memory impairment, neuroinflammation, insulin signaling impairment, and Amyloid Beta (Aß) deposition in adult male mice. The LPS was administered once per week and TA twice a week to adult male mice for three months consecutively. Behavioral studies were performed using different behavioral models such as balance beam, novel object recognition (NOR), Morris water maze (MWM), and Y-maze tests. The protein expression of different mediators such as TNF-α, p-JNK, pIRS636, BACE1, APP, and Aß was evaluated through western blot and immunofluorescence staining techniques. Biochemical assays were carried out to assess the antioxidant activities of TA. The computational study was conducted to predict the binding mode of TA with target sites of TNF-α. Behavioral studies showed that the TA-treated mice exhibited gradual memory improvement. TA significantly inhibited BACE1 activity and reduced production and accumulation of Aß in the hippocampus of mice brains. Moreover, the TA significantly inhibited LPS-induced ROS production and enhanced the glutathione levels. Furthermore, we have shown via the computational method for the first time that TA inhibits LPS-triggered TNF-á½° and its downstream signaling to reduce AD pathology including memory impairment, neuroinflammation, insulin signaling impairment, and Aß deposition in adult mice. Taken together our current study demonstrates that TA is a potential candidate for the abrogation of LPS-induced neurotoxicity and AD pathology in rodent's models.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Insulins , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/adverse effects , Aspartic Acid Endopeptidases/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Disease Models, Animal , Insulins/adverse effects , Lipopolysaccharides/pharmacology , Male , Maze Learning , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Mice , Tannins/adverse effects , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL