Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Am J Primatol ; 85(12): e23556, 2023 12.
Article in English | MEDLINE | ID: mdl-37779335

ABSTRACT

One of the most fundamental aspects of a species' behavioral strategy is its activity budget; for primates this generally involves the allocation of available time among resting, feeding, traveling, and social behavior. Comparisons between species, populations, or individuals can reveal divergences in adaptive strategies and current stressors, and reflect responses to such diverse pressures as predation, thermoregulation, nutrition, and social needs. Further, variation across seasons is an important part of behavioral strategies to survive food scarcity; this can involve increasing or decreasing effort. We documented activity over the 24-h cycle for the cathemeral, frugivorous Eulemur fulvus and the diurnal, folivorous Propithecus diadema across 13-18 months at Tsinjoarivo, Madagascar. Their activity budgets were dominated by resting (E. fulvus: 74.1%; P. diadema: 85.2%), followed by feeding (15.8%, 12.4%), traveling (9.31%, 1.74%) and social activities (0.76%, 0.70%), respectively. The lower feeding and higher resting in P. diadema likely reflect slower gastrointestinal transit and higher reliance on microbial fermentation to extract energy from fibrous food. The two species showed opposite lean season strategies. E. fulvus increased activity, with more feeding but less travel time, consistent with a shift to less-profitable fruits, and some leaves and flowers, while increasing feeding effort to compensate ("energy maximizing"). P. diadema showed less variation across months, but the lean season still evoked reduced effort across the board (feeding, travel, and social behavior), consistent with a "time minimizing" strategy prioritizing energy conservation and microbe-assisted digestion. Understanding these divergent shifts is key to understanding natural behavior and the extent of behavioral flexibility under stressful conditions. Finally, the complex patterns of fruit availability (intra- and interannually) and the species' behavioral responses across months underscore the need to move beyond simplistic "lean/abundant season" and "fruit/leaf" dichotomies in understanding underlying energetic strategies, and species' vulnerability to habitat change.


Subject(s)
Lemur , Strepsirhini , Animals , Lemur/physiology , Seasons , Ecosystem , Fruit , Madagascar , Feeding Behavior/physiology
2.
Proc Natl Acad Sci U S A ; 119(42): e2121105119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215474

ABSTRACT

Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use.


Subject(s)
Biological Evolution , Primates , Americas , Animals , Cercopithecidae , Haplorhini , Humans , Madagascar , Mammals , Trees
3.
Microbiol Spectr ; 10(3): e0164321, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35587638

ABSTRACT

The study of the mammalian microbiome serves as a critical tool for understanding host-microbial diversity and coevolution and the impact of bacterial communities on host health. While studies of specific microbial systems (e.g., in the human gut) have rapidly increased, large knowledge gaps remain, hindering our understanding of the determinants and levels of variation in microbiomes across multiple body sites and host species. Here, we compare microbiome community compositions from eight distinct body sites among 17 phylogenetically diverse species of nonhuman primates (NHPs), representing the largest comparative study of microbial diversity across primate host species and body sites. Analysis of 898 samples predominantly acquired in the wild demonstrated that oral microbiomes were unique in their clustering, with distinctive divergence from all other body site microbiomes. In contrast, all other body site microbiomes clustered principally by host species and differentiated by body site within host species. These results highlight two key findings: (i) the oral microbiome is unique compared to all other body site microbiomes and conserved among diverse nonhuman primates, despite their considerable dietary and phylogenetic differences, and (ii) assessments of the determinants of host-microbial diversity are relative to the level of the comparison (i.e., intra-/inter-body site, -host species, and -individual), emphasizing the need for broader comparative microbial analyses across diverse hosts to further elucidate host-microbial dynamics, evolutionary and biological patterns of variation, and implications for human-microbial coevolution. IMPORTANCE The microbiome is critical to host health and disease, but much remains unknown about the determinants, levels, and evolution of host-microbial diversity. The relationship between hosts and their associated microbes is complex. Most studies to date have focused on the gut microbiome; however, large gaps remain in our understanding of host-microbial diversity, coevolution, and levels of variation in microbiomes across multiple body sites and host species. To better understand the patterns of variation and evolutionary context of host-microbial communities, we conducted one of the largest comparative studies to date, which indicated that the oral microbiome was distinct from the microbiomes of all other body sites and convergent across host species, suggesting conserved niche specialization within the Primates order. We also show the importance of host species differences in shaping the microbiome within specific body sites. This large, comparative study contributes valuable information on key patterns of variation among hosts and body sites, with implications for understanding host-microbial dynamics and human-microbial coevolution.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Mammals , Phylogeny , Primates/microbiology
4.
Am J Phys Anthropol ; 175(3): 513-530, 2021 07.
Article in English | MEDLINE | ID: mdl-33650680

ABSTRACT

OBJECTIVES: Although fermented food use is ubiquitous in humans, the ecological and evolutionary factors contributing to its emergence are unclear. Here we investigated the ecological contexts surrounding the consumption of fruits in the late stages of fermentation by wild primates to provide insight into its adaptive function. We hypothesized that climate, socioecological traits, and habitat patch size would influence the occurrence of this behavior due to effects on the environmental prevalence of late-stage fermented foods, the ability of primates to detect them, and potential nutritional benefits. MATERIALS AND METHODS: We compiled data from field studies lasting at least 9 months to describe the contexts in which primates were observed consuming fruits in the late stages of fermentation. Using generalized linear mixed-effects models, we assessed the effects of 18 predictor variables on the occurrence of fermented food use in primates. RESULTS: Late-stage fermented foods were consumed by a wide taxonomic breadth of primates. However, they generally made up 0.01%-3% of the annual diet and were limited to a subset of fruit species, many of which are reported to have mechanical and chemical defenses against herbivores when not fermented. Additionally, late-stage fermented food consumption was best predicted by climate and habitat patch size. It was more likely to occur in larger habitat patches with lower annual mean rainfall and higher annual mean maximum temperatures. DISCUSSION: We posit that primates capitalize on the natural fermentation of some fruits as part of a nutritional strategy to maximize periods of fruit exploitation and/or access a wider range of plant species. We speculate that these factors contributed to the evolutionary emergence of the human propensity for fermented foods.


Subject(s)
Fermented Foods , Animals , Diet , Ecosystem , Fruit , Primates
5.
Am J Primatol ; 83(3): e23239, 2021 03.
Article in English | MEDLINE | ID: mdl-33544402

ABSTRACT

Tannins, a type of plant secondary metabolite, are well-known for their ability to precipitate proteins and thereby reduce the protein available to consumers. Most primate studies have focused on condensed tannins (CTs) as they were thought to be the most effective type of tannin at preventing protein acquisition, but there is growing recognition that other types of tannins can bind to proteins, suggesting the division among tannin types is not as clear-cut as previously thought. Although previous studies have documented the presence of CTs in primate diets and primates' behavioral responses to them, our understanding of tannins remains limited because few researchers have used Sephadex column purification to accurately determine tannin concentrations, and few have used in vitro assays to determine available protein content and the tannins' effectiveness in binding protein. In this study, we documented diademed sifaka (Propithecus diadema) diet from June to August 2018 at Tsinjoarivo, Madagascar (in two forests with varying degrees of habitat disturbance) and quantified CT concentration and actual available protein in foods. Eleven of the fourteen top foods tested contained CTs (concentrations: 4.8%-39.3% dry matter). An in vitro assay showed available protein was strikingly low in six of the eleven top foods (e.g., little to no apparent available protein, despite high crude protein). Overall, our findings suggest sifakas acquire less protein than previously recognized and probably have adaptations to counteract tannins. Such studies of available protein are critical in understanding dietary constraints on sifaka populations and the evolution of their diet choice strategies; despite the conventional wisdom that leaves are protein-rich, folivorous primates may indeed be protein-limited. However, further studies are necessary to determine if sifakas have counter-adaptations to tannins, and if they absorb more protein than our analyses suggest, perhaps receiving protein that we were unable to detect with the current techniques (e.g., pollen).


Subject(s)
Indriidae , Proanthocyanidins , Animals , Diet/veterinary , Tannins
6.
Heliyon ; 6(11): e05604, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33305036

ABSTRACT

Few studies have measured the prevalence of Cryptosporidium sp. and Giardia sp. infections in Madagascar. This project provides baseline data of these pathogens in humans and other mammals in Tsinjoarivo. Fecal samples were collected May-July 2014 from lemurs (Propithecus diadema and Hapalemur griseus), humans, domestic animals (cattle, pigs and dogs), and black rats (Rattus rattus). Samples were analyzed utilizing immunofluorescence assay. No lemurs were positive for either parasite. Cryptosporidium sp. was found in humans (10%), cattle (20%), pigs (20%), dogs (15%) and rats (38%), and Giardia sp. was found in humans (10%), pigs (40%), dogs (29%) and rats (53%). Coinfections were noted in humans (6%), pigs (20%), dogs (15%) and rats (33%). All human subjects reported daily contact with domestic animals and rats, and all infected humans were ≤13 years old. Human population growth and increasing human-wildlife encounters make it critical to understand the potential for zoonotic pathogen transmission.

7.
Folia Primatol (Basel) ; 91(4): 385-398, 2020.
Article in English | MEDLINE | ID: mdl-31694022

ABSTRACT

Rarely observed in mammals, female dominance is documented in several of Madagascar's lemurs. Although dominance affects many aspects of primates' lives, studies have largely focused on dyadic agonistic interactions to characterise relationships. We explored the power structure of three diademed sifaka groups (Propithecus diadema) at Tsinjoarivo during the lean season (July-August, 325 h) using social behaviours, group leadership, displacements and feeding outcomes. Two groups had a hierarchy dominated by the breeding female, while the highest rank was held by the breeding male in the third; in dyadic interactions, breeding females dominated males in all groups. Inconsistencies in hierarchies suggest that groups vary, with rank related to kinship ties of breeders. Aggression and grooming were rare; adult females received aggression at lower frequencies than males. Group movements were led more by females and followed more by males, and female feeding priority was evident in displacements during feeding. However, males and females did not differ in feeding outcomes, as expected (particularly in the lean season) if female dominance (and/or male deference) serves to ensure better access for females. This unexpected pattern (female dominance despite rare aggression, clear female leadership and displacement, yet no observable benefit in grooming or feeding outcomes) defies easy explanation, and reinforces the fact that studies examining female power in lemurs should take a multifaceted approach. Further study is needed to understand this pattern, the physiological and reproductive consequences of female dominance (e.g. detecting subtler variation in food quality or intake rates) and exactly how (and when) the benefits of female dominance are manifested.


Subject(s)
Indriidae/psychology , Social Dominance , Animals , Female , Grooming , Madagascar , Male , Sex Factors
8.
Sci Rep ; 9(1): 8776, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217457

ABSTRACT

Anthropogenic habitat change can have varied impacts on primates, including both negative and positive outcomes. Even when behavioural shifts are seen, they may reflect decreased health, or simply behavioural flexibility; understanding this distinction is important for conservation efforts. This study examines habitat-related variation in adult and immature morphometrics among diademed sifakas (Propithecus diadema). We collected morphometric data from sifakas at Tsinjoarivo, Madagascar (19 years, 188 captures, 113 individuals). Captures spanned 12 groups, five within continuous forest ("CONT"), and seven in degraded fragments ("FRAG") where sifakas have lower nutritional intakes. Few consistent differences were found between CONT and FRAG groups. However, using home range quality as a covariate rather than a CONT/FRAG dichotomy revealed a threshold: the two FRAG groups in the lowest-quality habitat showed low adult mass and condition (wasting), and low immature mass and length (stunting). Though less-disturbed fragments apparently provide viable habitat, we suggest the sifakas in the most challenging habitats cannot evolve fast enough to keep up with such rapid habitat change. We suggest other long-lived organisms will show similar morphometric "warning signs" (wasting in adults, stunting in immatures); selected morphometric variables can thus be useful at gauging vulnerability of populations in the face of anthropogenic change.


Subject(s)
Indriidae , Rainforest , Animals , Female , Indriidae/anatomy & histology , Indriidae/physiology , Male , Population Dynamics
9.
Conserv Physiol ; 7(1): coz001, 2019.
Article in English | MEDLINE | ID: mdl-30746150

ABSTRACT

Glucocorticoids are metabolic byproducts of animals' physiological responses to ecological or social challenges and are thought to represent an adaptive response allowing beneficial responses to short-term challenges. Glucocorticoid metabolites (GCs) can be assayed non-invasively through faeces and therefore can be a useful tool to gauge the health of populations experiencing natural and/or anthropogenic stressors. However, the response of GCs to anthropogenic stressors varies, with both higher and lower GC levels reported. Here, we describe variation in GC secretion within eight diademed sifaka (Propithecus diadema) groups across 1 year. These groups span a gradient of anthropogenic habitat disturbance, including groups in continuous forest ('CONT') and disturbed fragments ('FRAG'), and indicators of health suggest that FRAG groups are negatively impacted by habitat disturbance. We monitored phenology, used focal animal follows to quantify diet and collected faeces (n = 547) from which we quantified GC content using enzyme immunoassay. All groups showed elevated lean-season GCs, but with a single, brief peak. GCs were inversely correlated with feeding time. No overall effect of habitat (CONT vs. FRAG) was found, but the lean-season peak was significantly higher in CONT groups. There was a significant season*age-sex interaction; adult females had an attenuated lean-season response compared with groupmates. The observed lean-season 'challenge' is consistent with previous lemur studies, as well as mammals in general. Low and largely invariable GC levels in FRAG, within the context of observed health and nutritional declines, suggest that FRAG groups employ a strategy whereby the adrenal response to stressors is downregulated. More research is needed to contextualize our observations of GC variation and health on an individual level, both in terms of corroborating evidence for ecological and social stressors, and longer-term quantification of reproductive success and fitness.

10.
Nucleic Acids Res ; 45(15): e142, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28666376

ABSTRACT

Short tandem repeat (STR) variants are highly polymorphic markers that facilitate powerful population genetic analyses. STRs are especially valuable in conservation and ecological genetic research, yielding detailed information on population structure and short-term demographic fluctuations. Massively parallel sequencing has not previously been leveraged for scalable, efficient STR recovery. Here, we present a pipeline for developing STR markers directly from high-throughput shotgun sequencing data without a reference genome, and an approach for highly parallel target STR recovery. We employed our approach to capture a panel of 5000 STRs from a test group of diademed sifakas (Propithecus diadema, n = 3), endangered Malagasy rainforest lemurs, and we report extremely efficient recovery of targeted loci-97.3-99.6% of STRs characterized with ≥10x non-redundant sequence coverage. We then tested our STR capture strategy on P. diadema fecal DNA, and report robust initial results and suggestions for future implementations. In addition to STR targets, this approach also generates large, genome-wide single nucleotide polymorphism (SNP) panels from flanking regions. Our method provides a cost-effective and scalable solution for rapid recovery of large STR and SNP datasets in any species without needing a reference genome, and can be used even with suboptimal DNA more easily acquired in conservation and ecological studies.


Subject(s)
Genetic Markers , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Microsatellite Repeats , Strepsirhini/genetics , Animals , Base Sequence , Endangered Species , Genetics, Population/methods , Genome, Human , Genotyping Techniques/veterinary , High-Throughput Nucleotide Sequencing/veterinary , Humans , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/veterinary
11.
Biol Lett ; 13(3)2017 Mar.
Article in English | MEDLINE | ID: mdl-28275167

ABSTRACT

Some primate populations include both trichromatic and dichromatic (red-green colour blind) individuals due to allelic variation at the X-linked opsin locus. This polymorphic trichromacy is well described in day-active New World monkeys. Less is known about colour vision in Malagasy lemurs, but, unlike New World monkeys, only some day-active lemurs are polymorphic, while others are dichromatic. The evolutionary pressures underlying these differences in lemurs are unknown, but aspects of species ecology, including variation in activity pattern, are hypothesized to play a role. Limited data on X-linked opsin variation in lemurs make such hypotheses difficult to evaluate. We provide the first detailed examination of X-linked opsin variation across a lemur clade (Indriidae). We sequenced the X-linked opsin in the most strictly diurnal and largest extant lemur, Indri indri, and nine species of smaller, generally diurnal indriids (Propithecus). Although nocturnal Avahi (sister taxon to Propithecus) lacks a polymorphism, at least eight species of diurnal indriids have two or more X-linked opsin alleles. Four rainforest-living taxa-I. indri and the three largest Propithecus species-have alleles not previously documented in lemurs. Moreover, we identified at least three opsin alleles in Indri with peak spectral sensitivities similar to some New World monkeys.


Subject(s)
Color Vision/genetics , Opsins/genetics , Strepsirhini/genetics , Animals , Ecosystem , Genes, X-Linked , Polymorphism, Genetic , Sequence Analysis, Protein
12.
Am J Primatol ; 79(4): 1-14, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28095599

ABSTRACT

Minerals, though needed in small quantities, are essential to metabolic processes, and deficiencies can seriously threaten health, reproduction and survival. Despite this, few studies have measured mineral composition of wild primate foods and fewer have quantified mineral intake. Here we measured the concentration of nine minerals in 75 foods of diademed sifakas (Propithecus diadema; five groups) in habitats with varying levels of disturbance at Tsinjoarivo and estimated daily intakes using focal-animal feeding data and intake rates over one year. For six minerals (Ca, P, Na, Fe, Zn, and Cu), mean concentrations in foods fell short of the National Research Council's (NRC) recommendations for captive primates. Concentrations were highest in lianas, herbs, and epiphytes, and hemiparasites had exceptionally high Na. Leaves tended to have higher concentrations than fruits or flowers, but overlap was extensive. Mineral concentrations in daily diets varied little seasonally, but absolute intakes (g/day) were higher in the abundant season, due to the increase in food ingested. Disturbed habitat groups' diets had higher mineral concentrations for five minerals, but this translated into increased intakes only for Cu, as these groups ate less food overall. Overall, comparisons with percentage-based NRC recommendations suggests deficiencies, but this is contradicted by: (1) the fact that mass-specific intakes exceeded human recommendations, and (2) the lack of observed signs of deficiency. Ongoing efforts to quantify mineral consumption across wild primate populations and better understanding requirements on both a percentage and absolute basis will help in understanding effects on food selection, managing primate habitats and formulating captive diets.


Subject(s)
Diet , Minerals , Strepsirhini , Animal Feed , Animals , Feeding Behavior
13.
Am J Primatol ; 79(4): 1-13, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27094926

ABSTRACT

Protein limitation has been considered a key factor in hypotheses on the evolution of life history and animal communities, suggesting that animals should prioritize protein in their food choice. This contrasts with the limited support that food selection studies have provided for such a priority in nonhuman primates, particularly for folivores. Here, we suggest that this discrepancy can be resolved if folivores only need to select for high protein leaves when average protein concentration in the habitat is low. To test the prediction, we applied meta-analyses to analyze published and unpublished results of food selection for protein and fiber concentrations from 24 studies (some with multiple species) of folivorous primates. To counter potential methodological flaws, we differentiated between methods analyzing total nitrogen and soluble protein concentrations. We used a meta-analysis to test for the effect of protein on food selection by primates and found a significant effect of soluble protein concentrations, but a non-significant effect for total nitrogen. Furthermore, selection for soluble protein was reinforced in forests where protein was less available. Selection for low fiber content was significant but unrelated to the fiber concentrations in representative leaf samples of a given forest. There was no relationship (either negative or positive) between the concentration of protein and fiber in the food or in representative samples of leaves. Overall our study suggests that protein selection is influenced by the protein availability in the environment, explaining the sometimes contradictory results in previous studies on protein selection. Am. J. Primatol. 79:e22550, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Feeding Behavior , Food Preferences , Plant Leaves , Primates , Animals , Dietary Fiber
14.
Primates ; 58(2): 367-375, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27848157

ABSTRACT

The destruction and degradation of forest habitats are major threats to the sustainability of lemur populations in Madagascar. Madagascan landscapes often contain forest fragments that represent refuges for native fauna, while also being used for firewood and timber by local human populations. As undisturbed forest becomes increasingly scarce, understanding resource competition between humans and wildlife in disturbed habitats will be increasingly important. We tested the hypothesis that Malagasy and aye-ayes (Daubentonia madagascariensis) compete for the limited number of dead trees in rainforest fragments at Tsinjoarivo, Madagascar. We surveyed 2.16 ha within five fragments (range 5-228 ha) surrounding human settlements to quantify the density of dead trees and traces of both human and aye-aye activity. Neither aye-aye nor human traces were distributed according to the availability of particular trees species, and aye-ayes and Malagasy apparently preferred several different species. Although overlap was recorded in tree species used, human use tended to be positively correlated with a species' desirability as firewood, while a negative relationship was seen for aye-ayes. Both consumers used trees of similar diameter at breast height, but those used by aye-ayes tended to be older, suggesting that human use might precede usefulness for aye-ayes. Finally, the density of dead trees and aye-aye traces were highest in smaller fragments, but human traces did not vary across fragment size. Although further study is needed to better quantify the aye-aye diet in this region, these data suggest that aye-ayes and local people compete for dead trees, and this competition could constitute a pressure on aye-aye populations.


Subject(s)
Competitive Behavior , Feeding Behavior , Strepsirhini/physiology , Trees , Animals , Conservation of Natural Resources , Ecosystem , Humans , Madagascar
15.
Primates ; 57(4): 541-7, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27271303

ABSTRACT

Analyses of genetic polymorphisms can aid our understanding of intra- and interspecific variation in primate sociality, ecology, and behavior. Studies of primate opsin genes are prime examples of this, as single nucleotide variants (SNVs) in the X-linked opsin gene underlie variation in color vision. For primate species with polymorphic trichromacy, genotyping opsin SNVs can generally indicate whether individual primates are red-green color-blind (denoted homozygous M or homozygous L) or have full trichromatic color vision (heterozygous ML). Given the potential influence of color vision on behavior and fitness, characterizing the color vision status of study subjects is becoming commonplace for many primate field projects. Such studies traditionally involve a multi-step sequencing-based method that can be costly and time-consuming. Here we present a new reliable, rapid, and relatively inexpensive method for characterizing color vision in primate populations using high resolution melt analysis (HRMA). Using lemurs as a case study, we characterized variation at exons 3 and/or 5 of the X-linked opsin gene for 87 individuals representing nine species. We scored opsin genotypes and color vision status using both traditional sequencing-based methods as well as our novel melting-curve based HRMA protocol. For each species, the melting curves of varying genotypes (homozygous M, homozygous L, heterozygous ML) differed in melting temperature and/or shape. Melting curves for each sample were consistent across replicates, and genotype-specific melting curves were consistent across DNA sources (blood vs. feces). We show that opsin genotypes can be quickly and reliably scored using HRMA once lab-specific reference curves have been developed based on known genotypes. Although the protocol presented here focuses on genotyping lemur opsin loci, we also consider the larger potential for applying this approach to various types of genetic studies of primate populations.


Subject(s)
Color Vision , Genotyping Techniques/methods , Polymerase Chain Reaction/methods , Strepsirhini/physiology , Animals , Lemuridae/genetics , Lemuridae/physiology , Polymerase Chain Reaction/instrumentation , Strepsirhini/genetics
16.
PLoS One ; 10(6): e0128046, 2015.
Article in English | MEDLINE | ID: mdl-26061401

ABSTRACT

Animals experience spatial and temporal variation in food and nutrient supply, which may cause deviations from optimal nutrient intakes in both absolute amounts (meeting nutrient requirements) and proportions (nutrient balancing). Recent research has used the geometric framework for nutrition to obtain an improved understanding of how animals respond to these nutritional constraints, among them free-ranging primates including spider monkeys and gorillas. We used this framework to examine macronutrient intakes and nutrient balancing in sifakas (Propithecus diadema) at Tsinjoarivo, Madagascar, in order to quantify how these vary across seasons and across habitats with varying degrees of anthropogenic disturbance. Groups in intact habitat experience lean season decreases in frugivory, amounts of food ingested, and nutrient intakes, yet preserve remarkably constant proportions of dietary macronutrients, with the proportional contribution of protein to the diet being highly consistent. Sifakas in disturbed habitat resemble intact forest groups in the relative contribution of dietary macronutrients, but experience less seasonality: all groups' diets converge in the lean season, but disturbed forest groups largely fail to experience abundant season improvements in food intake or nutritional outcomes. These results suggest that: (1) lemurs experience seasonality by maintaining nutrient balance at the expense of calories ingested, which contrasts with earlier studies of spider monkeys and gorillas, (2) abundant season foods should be the target of habitat management, even though mortality might be concentrated in the lean season, and (3) primates' within-group competitive landscapes, which contribute to variation in social organization, may vary in complex ways across habitats and seasons.


Subject(s)
Ecosystem , Food Supply , Health Resources/supply & distribution , Lemur/metabolism , Strepsirhini/metabolism , Animals , Energy Intake , Female , Lemur/growth & development , Madagascar , Male , Models, Biological , Nutritive Value , Seasons , Strepsirhini/growth & development
18.
Proc Natl Acad Sci U S A ; 111(4): 1433-7, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24474770

ABSTRACT

Humans and other primates are distinct among placental mammals in having exceptionally slow rates of growth, reproduction, and aging. Primates' slow life history schedules are generally thought to reflect an evolved strategy of allocating energy away from growth and reproduction and toward somatic investment, particularly to the development and maintenance of large brains. Here we examine an alternative explanation: that primates' slow life histories reflect low total energy expenditure (TEE) (kilocalories per day) relative to other placental mammals. We compared doubly labeled water measurements of TEE among 17 primate species with similar measures for other placental mammals. We found that primates use remarkably little energy each day, expending on average only 50% of the energy expected for a placental mammal of similar mass. Such large differences in TEE are not easily explained by differences in physical activity, and instead appear to reflect systemic metabolic adaptation for low energy expenditures in primates. Indeed, comparisons of wild and captive primate populations indicate similar levels of energy expenditure. Broad interspecific comparisons of growth, reproduction, and maximum life span indicate that primates' slow metabolic rates contribute to their characteristically slow life histories.


Subject(s)
Energy Metabolism , Life Cycle Stages , Primates/physiology , Animals , Basal Metabolism , Humans
19.
Am J Phys Anthropol ; 153(1): 78-91, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24318944

ABSTRACT

Primate field studies often identify "lean seasons," when preferred foods are scarce, and lower-quality, abundant foods (fallback foods) are consumed. Here, we quantify the nutritional implications of these terms for two diademed sifaka groups (Propithecus diadema) in Madagascar, using detailed feeding observations and chemical analyses of foods. In particular, we sought to understand 1) how macronutrient and energy intakes vary seasonally, including whether these intakes respond in similar or divergent ways; 2) how the amount of food ingested varies seasonally (including whether changes in amount eaten may compensate for altered food quality); and 3) correlations between these variables and the degree of frugivory. In the lean season, sifakas shifted to non-fruit foods (leaves and flowers), which tended to be high in protein while low in other macronutrients and energy, but the average composition of the most used foods in each season was similar. They also showed dramatic decreases in feeding time, food ingested, and consequently, daily intake of macronutrients and energy. The degree of frugivory in the daily diet was a strong positive predictor of feeding time, amount ingested and all macronutrient and energy intakes, though season had an independent effect. These results suggest that factors restricting how much food can be eaten (e.g., handling time, availability, or intrinsic characteristics like fiber and plant secondary metabolites) can be more important than the nutritional composition of foods themselves in determining nutritional outcomes-a finding with relevance for understanding seasonal changes in behavior, life history strategies, competitive regimes, and conservation planning.


Subject(s)
Energy Intake/physiology , Feeding Behavior/physiology , Seasons , Strepsirhini/physiology , Analysis of Variance , Animals , Anthropology, Physical , Diet , Ecology , Female , Male
20.
PLoS One ; 8(4): e62086, 2013.
Article in English | MEDLINE | ID: mdl-23626770

ABSTRACT

Analyses of phylogenetic topology and estimates of divergence timing have facilitated a reconstruction of Madagascar's colonization events by vertebrate animals, but that information alone does not reveal the major factors shaping the island's biogeographic history. Here, we examine profiles of Malagasy vertebrate clades through time within the context of the island's paleogeographical evolution to determine how particular events influenced the arrival of the island's extant groups. First we compare vertebrate profiles on Madagascar before and after selected events; then we compare tetrapod profiles on Madagascar to contemporary tetrapod compositions globally. We show that changes from the Mesozoic to the Cenozoic in the proportions of Madagascar's tetrapod clades (particularly its increase in the representation of birds and mammals) are tied to changes in their relative proportions elsewhere on the globe. Differences in the representation of vertebrate classes from the Mesozoic to the Cenozoic reflect the effects of extinction (i.e., the non-random susceptibility of the different vertebrate clades to purported catastrophic global events 65 million years ago), and new evolutionary opportunities for a subset of vertebrates with the relatively high potential for transoceanic dispersal potential. In comparison, changes in vertebrate class representation during the Cenozoic are minor. Despite the fact that the island's isolation has resulted in high vertebrate endemism and a unique and taxonomically imbalanced extant vertebrate assemblage (both hailed as testimony to its long isolation), that isolation was never complete. Indeed, Madagascar's extant tetrapod fauna owes more to colonization during the Cenozoic than to earlier arrivals. Madagascar's unusual vertebrate assemblage needs to be understood with reference to the basal character of clades originating prior to the K-T extinction, as well as to the differential transoceanic dispersal advantage of other, more recently arriving clades. Thus, the composition of Madagascar's endemic vertebrate assemblage itself provides evidence of the island's paleogeographic history.


Subject(s)
Vertebrates/classification , Animals , Biological Evolution , Earth Sciences , Environment , Geography , Madagascar , Phylogeny , Vertebrates/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...