Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Biometals ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305434

ABSTRACT

Leptospires, as motile Gram-negative bacteria, employ sophisticated strategies for efficient invasion and dissemination within their hosts. In response, hosts counteract pathogens through nutritional immunity, a concept involving the deprivation of essential metals such as zinc. Zinc, pivotal in modulating pathogen-host interactions, influences proteins structural, catalytic, and regulatory functions. A comprehensive understanding of how leptospires regulate intracellular zinc availability is crucial for deciphering their survival mechanisms. This study explores the proteomic profile of Leptospira interrogans sv. Copenhageni str. 10A cultivated in Ellinghausen-McCullough-Johnson-Harris medium supplemented with the zinc chelator TPA or ZnCl2. Among the 2161 proteins identified, 488 were subjected to scrutiny, revealing 102 less abundant and 81 more abundant in response to TPA. Of these 488 proteins, 164 were exclusive to the presence of TPA and 141 were exclusive to the zinc-enriched conditions. Differentially expressed proteins were classified into clusters of orthologous groups (COGs) with a distribution in metabolic functions (37.8%), information storage/processing (21.08%), cellular processes/signaling (28.04%), and poorly characterized proteins (10.65%). Differentially expressed proteins are putatively involved in processes like 1-carbon compound metabolism, folate biosynthesis, and amino acid/nucleotide synthesis. Zinc availability significantly impacted key processes putatively related to leptospires' interactions with their host, such as motility, biofilm formation, and immune escape. Under conditions of higher zinc concentration, ribosomal proteins, chaperones and components of transport systems were observed, highlighting interactions between regulatory networks responsive to zinc and iron in L. interrogans. This study not only revealed hypothetical proteins potentially related to zinc homeostasis, but also identified possible virulence mechanisms and pathogen-host adaptation strategies influenced by the availability of this metal. There is an urgent need, based on these data, for further in-depth studies aimed at detailing the role of zinc in these pathways and mechanisms, which may ultimately determine more effective therapeutic approaches to combat Leptospira infections.

2.
Microbes Infect ; : 105413, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39284496

ABSTRACT

Leptospirosis is an infectious neglected disease estimated to affect more than one million people worldwide each year. The Complement System plays a vital role in eliminating infectious agents. However, its precise role in leptospirosis remains to be fully understood. We investigated the importance of C3 in L. interrogans serovar Kennewicki strain Pomona Fromm (LPF) infection. Lack of C3 leads to decreased leukocyte number, impaired inflammatory response and failure to eliminate bacteria during the early stages of infection, which may cause interstitial nephritis later. These findings could be explained, at least in part, by the lower presence of local opsonins. Furthermore, antibody production against Leptospira was compromised in the absence of C3, highlighting the importance of CR2 in B lymphocyte proliferation and the adjuvant role of C3d in humoral immunity. Leptospires can be eliminated through the urine, and according to our study, the lack of C3 delays the elimination of LPF through urine during the early stages of the infection. These results strongly suggest the crucial role of C3 protein in orchestrating an appropriate inflammatory response against LPF infection and in effectively eliminating the bacteria from the body during the acute phase of leptospirosis.

4.
Vaccines (Basel) ; 11(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36851237

ABSTRACT

Sphingomyelin is a major constituent of eukaryotic cell membranes, and if degraded by bacteria sphingomyelinases may contribute to the pathogenesis of infection. Among Leptospira spp., there are five sphingomyelinases exclusively expressed by pathogenic leptospires, in which Sph2 is expressed during natural infections, cytotoxic, and implicated in the leptospirosis hemorrhagic complications. Considering this and the lack of information about associations between Sph2 and leptospirosis severity, we use a combination of immunoinformatics approaches to identify its B-cell epitopes, evaluate their reactivity against samples from leptospirosis patients, and investigate the role of antibodies anti-Sph2 in protection against severe leptospirosis. Two B-cell epitopes, Sph2(176-191) and Sph2(446-459), were predicted in Sph2 from L. interrogans serovar Lai, presenting different levels of identity when compared with other pathogenic leptospires. These epitopes were recognized by about 40% of studied patients with a prevalence of IgG antibodies against both Sph2(176-191) and Sph2(446-459). Remarkably, just individuals with low reactivity to Sph2(176-191) presented clinical complications, while high responders had only mild symptoms. Therefore, we identified two B-cell linear epitopes, recognized by antibodies of patients with leptospirosis, that could be further explored in the development of multi-epitope vaccines against leptospirosis.

5.
Front Cell Infect Microbiol, v. 13, 1210178, mai. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4937
6.
Vaccines, v. 11, n. 2, 359, fev. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4807

ABSTRACT

Sphingomyelin is a major constituent of eukaryotic cell membranes, and if degraded by bacteria sphingomyelinases may contribute to the pathogenesis of infection. Among Leptospira spp., there are five sphingomyelinases exclusively expressed by pathogenic leptospires, in which Sph2 is expressed during natural infections, cytotoxic, and implicated in the leptospirosis hemorrhagic complications. Considering this and the lack of information about associations between Sph2 and leptospirosis severity, we use a combination of immunoinformatics approaches to identify its B-cell epitopes, evaluate their reactivity against samples from leptospirosis patients, and investigate the role of antibodies anti-Sph2 in protection against severe leptospirosis. Two B-cell epitopes, Sph2(176-191) and Sph2(446-459), were predicted in Sph2 from L. interrogans serovar Lai, presenting different levels of identity when compared with other pathogenic leptospires. These epitopes were recognized by about 40% of studied patients with a prevalence of IgG antibodies against both Sph2(176-191) and Sph2(446-459). Remarkably, just individuals with low reactivity to Sph2(176-191) presented clinical complications, while high responders had only mild symptoms. Therefore, we identified two B-cell linear epitopes, recognized by antibodies of patients with leptospirosis, that could be further explored in the development of multi-epitope vaccines against leptospirosis.

7.
Scand J Immunol ; 98(5): e13316, 2023 Nov.
Article in English | MEDLINE | ID: mdl-39008520

ABSTRACT

Leptospirosis is a neglected disease caused by bacteria of the genus Leptospira and is more prevalent in tropical and subtropical countries. This pathogen infects humans and other animals, responsible for the most widespread zoonosis in the world, estimated to be responsible for 60 000 deaths and 1 million cases per year. To date, commercial vaccines against human leptospirosis are available only in some countries such as Japan, China, Cuba and France. These vaccines prepared with inactivated Leptospira (bacterins) induce a short-term and serovar-specific immune response, with strong adverse side effects. To circumvent these limitations, several research groups are investigating new experimental vaccines in order to ensure that they are safe, efficient, and protect against several pathogenic Leptospira serovars, inducing sterilizing immunity. Most of these protocols use attenuated cultures, preparations after LPS removal, recombinant proteins or DNA from pathogenic Leptospira spp. The aim of this review was to highlight several promising vaccine candidates, considering their immunogenicity, presence in different pathogenic Leptospira serovars, their role in virulence or immune evasion and other factors.


Subject(s)
Bacterial Vaccines , Leptospira , Leptospirosis , Leptospirosis/prevention & control , Leptospirosis/immunology , Humans , Leptospira/immunology , Bacterial Vaccines/immunology , Animals , Vaccines, Inactivated/immunology
8.
Front Pediatr ; 10: 1039291, 2022.
Article in English | MEDLINE | ID: mdl-36405845

ABSTRACT

Factor H (FH) is one of the most important regulatory proteins of the alternative pathway of the complement system. FH deficiency is a rare condition that causes unregulated C3 consumption, leading to an increased susceptibility to infections and glomerulopathies. Our previous studies have demonstrated a FH deficient patient carrying a c.452G > A, p.R127H FH mutation which leads to a misfolded protein and its retention in the endoplasmic reticulum. In his cultured fibroblasts, FH-delayed secretion was partially rescued when treated with curcumin, and once secreted, exhibited normal regulatory function. Here, we report a childhood-onset systemic lupus erythematosus (cSLE) in this FH deficient patient and the results of experimental treatment with curcumin aiming to rescue FH secretion and regulatory activity.

9.
Front Cell Infect Microbiol ; 12: 966370, 2022.
Article in English | MEDLINE | ID: mdl-36081769

ABSTRACT

Extracellular proteolytic enzymes are produced by a variety of pathogenic microorganisms, and contribute to host colonization by modulating virulence. Here, we present a first characterization of leptolysin, a Leptospira metalloprotease of the pappalysin family identified in a previous exoproteomic study. Comparative molecular analysis of leptolysin with two other pappalysins from prokaryotes, ulilysin and mirolysin, reveals similarities regarding calcium, zinc, and arginine -binding sites conservation within the catalytic domain, but also discloses peculiarities. Variations observed in the primary and tertiary structures may reflect differences in primary specificities. Purified recombinant leptolysin of L. interrogans was obtained as a ~50 kDa protein. The protease exhibited maximal activity at pH 8.0 and 37°C, and hydrolytic activity was observed in the presence of different salts with maximum efficiency in NaCl. Substrate specificity was assessed using a small number of FRET peptides, and showed a marked preference for arginine residues at the P1 position. L. interrogans leptolysin proteolytic activity on proteinaceous substrates such as proteoglycans and plasma fibronectin was also evaluated. All proteins tested were efficiently degraded over time, confirming the protease´s broad-spectrum activity in vitro. In addition, leptolysin induced morphological alterations on HK-2 cells, which may be partially attributed to extracellular matrix (ECM) degradation. Hemorrhagic foci were observed in the dorsal skin of mice intradermally injected with leptolysin, as a plausible consequence of ECM disarray and vascular endothelium glycocalyx damage. Assuming that leptospiral proteases play an important role in all stages of the infectious process, characterizing their functional properties, substrates and mechanisms of action is of great importance for therapeutic purposes.


Subject(s)
Leptospira , Metalloproteases , Animals , Arginine/metabolism , Leptospira/chemistry , Leptospira/metabolism , Leptospirosis , Metalloproteases/metabolism , Metalloproteases/pharmacology , Mice , Peptide Hydrolases/metabolism
10.
Immunol Lett ; 236: 37-50, 2021 08.
Article in English | MEDLINE | ID: mdl-34111475

ABSTRACT

Innate immunity contributes effectively to the development of Alcohol-Associated liver disease (ALD). Particularly, human studies and murine models of ALD have shown that Complement activation plays an important role during the initial and later stages of ALD. The Complement System may contribute to the pathogenesis of this disease since it has been shown that ethanol-derived metabolic products activate the Complement cascade on liver membranes, leading to hepatocellular damage. However, studies evaluating the plasma levels of Complement proteins in ALD patients present contradictory results in some cases, and do not establish a well-marked role for each Complement component. The impairment of leukocyte chemoattractant activity observed in these patients may contribute to the susceptibility to bacterial infections in the latter stages of the disease. On the other hand, murine models of ALD have provided more detailed insights into the mechanisms that link the Complement System to the pathogenesis of the disease. It has been observed that Classical pathway can be activated via C1q binding to apoptotic cells in the liver and contributes to the development of hepatic inflammation. C3 contributes to the accumulation of triglycerides in the liver and in adipose tissue, while C5 seems to be involved with inflammation and liver injury after chronic ethanol consumption. In this review, we present a compendium of studies evaluating the role of Complement in human and murine models of ALD. We also discuss potential therapies to human ALD, highlighting the use of Complement inhibitors.


Subject(s)
Complement System Proteins/immunology , Complement System Proteins/metabolism , Disease Susceptibility , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/metabolism , Animals , Biomarkers , Complement Activation/genetics , Complement Activation/immunology , Disease Management , Disease Models, Animal , Disease Susceptibility/immunology , Humans , Immunomodulation , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/therapy , Molecular Targeted Therapy
11.
Life Sci ; 272: 119245, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33609539

ABSTRACT

In the past 20 years, infections caused by coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2 have posed a threat to public health since they may cause severe acute respiratory syndrome (SARS) in humans. The Complement System is activated during viral infection, being a central protagonist of innate and acquired immunity. Here, we report some interactions between these three coronaviruses and the Complement System, highlighting the central role of C3 with the severity of these infections. Although it can be protective, its role during coronavirus infections seems to be contradictory. For example, during SARS-CoV-2 infection, Complement System can control the viral infection in asymptomatic or mild cases; however, it can also intensify local and systemic damage in some of severe COVID-19 patients, due to its potent proinflammatory effect. In this last condition, the activation of the Complement System also amplifies the cytokine storm and the pathogenicity of coronavirus infection. Experimental treatment with Complement inhibitors has been an enthusiastic field of intense investigation in search of a promising additional therapy in severe COVID-19 patients.


Subject(s)
COVID-19/immunology , Complement System Proteins/immunology , SARS-CoV-2/immunology , Animals , COVID-19/complications , COVID-19/pathology , Complement Activation/drug effects , Complement C3/immunology , Complement Inactivating Agents/pharmacology , Complement Inactivating Agents/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Humans , Inflammation/complications , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Middle East Respiratory Syndrome Coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/pathology , COVID-19 Drug Treatment
12.
Front Immunol ; 11: 572562, 2020.
Article in English | MEDLINE | ID: mdl-33240263

ABSTRACT

Properdin (P) is a positive regulatory protein that stabilizes the C3 convertase and C5 convertase of the complement alternative pathway (AP). Several studies have suggested that properdin can bind directly to the surface of certain pathogens regardless of the presence of C3bBb. Saprophytic Leptospira are susceptible to complement-mediated killing, but the interaction of properdin with Leptospira spp. has not been evaluated so far. In this work, we demonstrate that properdin present in normal human serum, purified properdin, as well as properdin oligomers P2, P3, and P4, interact with Leptospira. Properdin can bind directly to the bacterial surface even in the absence of C3b. In line with our previous findings, AP activation was shown to be important for killing non-pathogenic L. biflexa, and properdin plays a key role in this process since this microorganism survives in P-depleted human serum and the addition of purified properdin to P-depleted human serum decreases the number of viable leptospires. A panel of pathogenic L.interrogans recombinant proteins was used to identify putative properdin targets. Lsa30, an outer membrane protein from L. interrogans, binds to unfractionated properdin and to a lesser extent to P2-P4 properdin oligomers. In conclusion, properdin plays an important role in limiting bacterial proliferation of non-pathogenic Leptospira species. Once bound to the leptospiral surface, this positive complement regulatory protein of the AP contributes to the formation of the C3 convertase on the leptospire surface even in the absence of prior addition of C3b.


Subject(s)
Complement C3b/metabolism , Complement Factor B/metabolism , Leptospira interrogans/physiology , Leptospira/physiology , Leptospirosis/metabolism , Properdin/metabolism , Bacterial Outer Membrane Proteins/metabolism , Cell Growth Processes , Complement Pathway, Alternative , Cytotoxicity, Immunologic , Humans , Leptospira/pathogenicity , Leptospira interrogans/pathogenicity , Leptospirosis/immunology , Properdin/immunology , Protein Binding , Virulence
13.
Microbes Infect ; 22(10): 550-557, 2020.
Article in English | MEDLINE | ID: mdl-32730816

ABSTRACT

The Complement System (CS) plays an important role in the immune response against leptospirosis and can be activated by the Alternative and Lectin Pathways (Innate Immunity) and by the Classical Pathway (Acquired Immunity). Here we analyzed a broad range of nonpathogenic and pathogenic Leptospira strains considering their interaction with each CS pathway. We determined bacterial survival rate and CS protein deposition in the presence of purified proteins, specific component depleted sera and NHS treated with the chelating agents EDTA (inhibits all three activation pathways) or EGTA (inhibits the Classical and Lectin Pathways). We suggest that the Lectin and the Alternative Pathways have an important role to eliminate saprophytic leptospires since i) approximately 50% survival of both saprophytic strains was observed in the presence of MBL-deficient serum; ii) approximately 50% survival of Leptospira biflexa Patoc I was observed in the presence of NHS - EGTA and iii) C1q-depleted serum caused significant bacterial lysis. In all serovars investigated the deposition of C5-C9 proteins on saprophytic Leptospira strains was more pronounced when compared to pathogenic species confirming previous studies in the literature. No difference on C3 deposition was observed between nonpathogenic and pathogenic strains. In conclusion, Leptospira strains interact to different degrees with CS proteins, especially those necessary to form MAC, indicating that some strains and specific ligands could favor the binding of certain CS proteins.


Subject(s)
Complement Activation , Leptospira/immunology , Leptospirosis/immunology , Complement System Proteins/immunology , Humans , Immune Evasion , Leptospira/pathogenicity , Microbial Viability/immunology
14.
Methods Mol Biol ; 2134: 187-198, 2020.
Article in English | MEDLINE | ID: mdl-32632870

ABSTRACT

Like many other pathogens of medical importance, pathogenic Leptospira employ diverse strategies to circumvent Complement System activation. Under physiological conditions, this central humoral arm of innate immunity is tightly controlled by negative Complement regulatory proteins. However, upon infection, pathogenic microorganisms interfere with normal Complement host defense mechanisms by recruiting or mimicking Complement regulators and by secreting endogenous proteases or acquiring host's proteases that inactivate key Complement components. In this chapter, we describe in detail some of the most frequently used assays to evaluate Leptospira Complement resistance.


Subject(s)
Biological Assay/methods , Complement System Proteins/immunology , Complement Activation/immunology , Humans , Immunity, Humoral/immunology , Immunity, Innate/immunology , Leptospira/immunology , Leptospirosis/immunology , Leptospirosis/microbiology , Protein Binding/immunology
15.
FEBS Lett ; 594(16): 2633-2644, 2020 08.
Article in English | MEDLINE | ID: mdl-32153015

ABSTRACT

Leptospires are highly invasive spirochetes equipped with efficient strategies for dissemination in the host. The Leptospira genus currently comprises 64 species divided into two major clades: the saprophytes composed of nonpathogenic, free-living organisms, and the pathogens encompassing all the species that cause mild or severe infections in humans and animals. While saprophytes are highly susceptible to the lytic action of the complement system, pathogenic (virulent) strains have evolved virulence strategies that allow efficient colonization of a variety of hosts and target organs, including mechanisms to circumvent hosts' innate and acquired immune responses. Pathogenic Leptospira avoid complement-mediated killing by recruiting host complement regulatory proteins and by targeting complement proteins using own and host-expressed proteases. This review outlines the role of complement in eradicating saprophytic Leptospira and the stratagems adopted by pathogenic Leptospira to maneuver the host complement system for their benefit.


Subject(s)
Complement System Proteins/immunology , Immune Evasion , Leptospira , Leptospirosis/immunology , Animals , Humans , Leptospira/immunology , Leptospira/pathogenicity , Leptospirosis/pathology
16.
Front Immunol, v. 11, 572562, nov. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3368

ABSTRACT

Properdin (P) is a positive regulatory protein that stabilizes the C3 convertase and C5 convertase of the complement alternative pathway (AP). Several studies have suggested that properdin can bind directly to the surface of certain pathogens regardless of the presence of C3bBb. Saprophytic Leptospira are susceptible to complement-mediated killing, but the interaction of properdin with Leptospira spp. has not been evaluated so far. In this work, we demonstrate that properdin present in normal human serum, purified properdin, as well as properdin oligomers P2, P3, and P4, interact with Leptospira. Properdin can bind directly to the bacterial surface even in the absence of C3b. In line with our previous findings, AP activation was shown to be important for killing non-pathogenic L. biflexa, and properdin plays a key role in this process since this microorganism survives in P-depleted human serum and the addition of purified properdin to P-depleted human serum decreases the number of viable leptospires. A panel of pathogenic L. interrogans recombinant proteins was used to identify putative properdin targets. Lsa30, an outer membrane protein from L. interrogans, binds to unfractionated properdin and to a lesser extent to P2-P4 properdin oligomers. In conclusion, properdin plays an important role in limiting bacterial proliferation of non-pathogenic Leptospira species. Once bound to the leptospiral surface, this positive complement regulatory protein of the AP contributes to the formation of the C3 convertase on the leptospire surface even in the absence of prior addition of C3b.

17.
Microbes Infect, v. 22, n. 10, p. 550-557, jul. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3118

ABSTRACT

The Complement System CS plays an important role in the immune response against leptospirosis and can be activated by the Alternative and Lectin Pathways (Innate Immunity) and by the Classical Pathway (Acquired Immunity). Here we analyzed a broad range of nonpathogenic and pathogenic Leptospira strains considering their interaction with each CS pathway. We determined bacterial survival rate and CS protein deposition in the presence of purified proteins, specific component depleted sera and NHS treated with the chelating agents EDTA inhibits all three activation pathways) or EGTA inhibits the Classical and Lectin Pathways. We suggest that the Lectin and the Alternative Pathways have an important role to eliminate saprophytic leptospires since i) approximately 50% survival of both saprophytic strains was observed in the presence of MBL-deficient serum; ii) approximately 50 % survival of L. biflexa Patoc I was observed in the presence of NHS – EGTA and iii) C1q-depleted serum caused significant bacterial lysis. In all serovars investigated the deposition of C5-C9 proteins on saprophytic Leptospira strains was more pronounced when compared to pathogenic species confirming previous studies in the literature. No difference on C3 deposition was observed between nonpathogenic and pathogenic strains. In conclusion, Leptospira strains interact to different degrees with CS proteins, especially those necessary to form MAC, indicating that some strains and specific ligands could favor the binding of certain CS proteins.

18.
FEBS Lett, v. 594, n. 16, p. 2633-2644, mar. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2970

ABSTRACT

Leptospires are highly invasive spirochetes equipped with efficient strategies for dissemination in the host. The Leptospira genus currently comprises 64 species divided into two major clades: the saprophytes composed of nonpathogenic, free-living organisms, and the pathogens encompassing all the species that cause mild or severe infections in humans and animals. While saprophytes are highly susceptible to the lytic action of the complement system, pathogenic (virulent) strains have evolved virulence strategies that allow efficient colonization of a variety of hosts and target organs, including mechanisms to circumvent hosts' innate and acquired immune responses. Pathogenic Leptospira avoid complement-mediated killing by recruiting host complement regulatory proteins and by targeting complement proteins using own and host-expressed proteases. This review outlines the role of complement in eradicating saprophytic Leptospira and the stratagems adopted by pathogenic Leptospira to maneuver the host complement system for their benefit.

19.
FEBS Lett. ; 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17530

ABSTRACT

Leptospires are highly invasive spirochetes equipped with efficient strategies for dissemination in the host. The Leptospira genus currently comprises 64 species divided into two major clades: the saprophytes composed of nonpathogenic, free-living organisms, and the pathogens encompassing all the species that cause mild or severe infections in humans and animals. While saprophytes are highly susceptible to the lytic action of the complement system, pathogenic (virulent) strains have evolved virulence strategies that allow efficient colonization of a variety of hosts and target organs, including mechanisms to circumvent hosts' innate and acquired immune responses. Pathogenic Leptospira avoid complement-mediated killing by recruiting host complement regulatory proteins and by targeting complement proteins using own and host-expressed proteases. This review outlines the role of complement in eradicating saprophytic Leptospira and the stratagems adopted by pathogenic Leptospira to maneuver the host complement system for their benefit.

20.
J Immunol Res ; 2019: 1892508, 2019.
Article in English | MEDLINE | ID: mdl-31687410

ABSTRACT

Leptospirosis is considered a neglected disease with an estimated more than one million cases every year. Since rodents are at the same time the main reservoir and generally asymptomatic to Leptospira infection, understanding why some animal species are resistant and others are susceptible to this infection would shed some light in how to control this important zoonosis. The innate immune response against Leptospira is mainly dependent on phagocytosis and activation of the Complement System. In this context, cytokines may drive the early control of infection and the adaptive response. Since the Complement System is important to eliminate leptospires in vivo, we investigated if Complement C5 in A/J mice would modulate the cytokine production during infection by Leptospira interrogans serovar Kennewicki type Pomona Fromm (LPF). Thus, our aim was to investigate the systemic levels of pro- and anti-inflammatory cytokines during Leptospira infection in the blood, liver, lung, and kidney on the third and sixth days of infection in A/J C5+/+ and A/J C5-/- mice. Blood levels of TNF-α, IL-6, IFN-γ, and MCP-1 reached a peak on the third day. Although both mouse strains developed splenomegaly, similar histopathological alterations in the liver and the lung, levels of pro- and anti-inflammatory cytokines were different. A/J C5+/+ mice had higher levels of liver IL-10, IL-1ß, IL-12p40, and IL-12p70 and kidney IL-1ß, IL-12p40, and IL-12p70 on the sixth day of infection when compared to A/J C5-/- mice. Our results showed that in A/J genetic background, the Complement component C5 modulates a cytokine profile in the liver and kidney of infected mice, which may play a role in the control of disease progression.


Subject(s)
Cytokines/blood , Leptospira interrogans , Leptospirosis/blood , Leptospirosis/microbiology , Animals , Biomarkers , Biopsy , Cytokines/metabolism , Disease Models, Animal , Host-Pathogen Interactions , Leptospirosis/metabolism , Leptospirosis/pathology , Leukocyte Count , Liver/metabolism , Liver/microbiology , Liver/pathology , Mice , Organ Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL