Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 18(6)2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28587311

ABSTRACT

One of the traits studied by Mendel in pea (Pisum sativum L.) was the wrinkled-seeded phenotype, and the molecular basis for a mutation underlying this phenotype was discovered in the 1990s. Although the starch-branching enzyme gene mutation identified at the genetic locus r is most likely to be that in seeds available to Mendel in the mid-1800s, it has remained an open question as to whether or not additional natural mutations in this gene exist within Pisum germplasm collections. Here, we explore this question and show that all but two wrinkled-seeded variants in one such collection correspond to either the mutant allele described previously for the r locus or a mutation at a second genetic locus, rb, affecting the gene encoding the large subunit of Adenosine diphosphoglucose (ADP-glucose) pyrophosphorylase; the molecular basis for the rb mutation is described here. The genetic basis for the phenotype of one (JI 2110) of the two lines which are neither r nor rb has been studied in crosses with a round-seeded variant (JI 281); for which extensive genetic marker data were expected. In marked contrast to the trait studied by Mendel and the rb phenotype; the data suggest that the wrinkled-seeded phenotype in JI 2110 is maternally determined, controlled by two genetic loci, and the extent to which it is manifested is very sensitive to the environment. Metabolite analysis of the cotyledons of JI 2110 revealed a profile for sucrose and sucrose-derived compounds that was more similar to that of wild-type round-seeded, than that of wrinkled-seeded r, pea lines. However, the metabolite profile of the seed coat (testa) of JI 2110 was distinct from that of other round-seeded genotypes tested which, together with analysis of recombinant inbred progeny lines, suggests an explanation for the seed phenotype.


Subject(s)
Genetic Variation , Pisum sativum/anatomy & histology , Pisum sativum/genetics , Seeds/anatomy & histology , Seeds/genetics , Alleles , Genes, Plant , Genetic Loci , Genotype , Glucose-1-Phosphate Adenylyltransferase/genetics , Mutation , Pisum sativum/enzymology , Phenotype , Plant Proteins/genetics
3.
PLoS One ; 10(8): e0134634, 2015.
Article in English | MEDLINE | ID: mdl-26267859

ABSTRACT

Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving or abolishing the corresponding inhibitory activity, along with associated molecular markers for breeding programmes. The potential for making large changes to plant protein profiles for improved and sustainable food production through diversity is illustrated. The strategy employed here to reduce anti-nutritional proteins in seeds may be extended to allergens and other seed proteins with negative nutritional effects. Additionally, the novel variants described for pea will assist future studies of the biological role and health-related properties of so-called anti-nutrients.


Subject(s)
Chymotrypsin/chemistry , Pisum sativum/chemistry , Plant Proteins/genetics , Protease Inhibitors/chemistry , Amino Acid Sequence , Animals , Chymotrypsin/antagonists & inhibitors , Chymotrypsin/genetics , Diet , Humans , Mutation , Pisum sativum/genetics , Pisum sativum/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Seeds/chemistry , Seeds/genetics , Trypsin/chemistry , Trypsin/genetics , Trypsin Inhibitors/chemistry
4.
Funct Plant Biol ; 40(12): 1261-1270, 2013 Dec.
Article in English | MEDLINE | ID: mdl-32481193

ABSTRACT

A fast neutron (FN)-mutagenised population was generated in Pisum sativum L. (pea) to enable the identification and isolation of genes underlying traits and processes. Studies of several phenotypic traits have clearly demonstrated the utility of the resource by associating gene deletions with phenotype followed by functional tests exploiting additional mutant sources, from both induced and natural variant germplasm. For forward genetic screens, next generation sequencing methodologies provide an opportunity for identifying genes associated with deletions rapidly and systematically. The application of rapid reverse genetic screens of the fast neutron mutant pea population supports conclusions on the frequency of deletions based on phenotype alone. These studies also suggest that large deletions affecting one or more loci can be non-deleterious to the pea genome, yielding mutants that could not be obtained by other means. Deletion mutants affecting genes associated with seed metabolism and storage are providing unique opportunities to identify the products of complex and related gene families, and to study the downstream consequences of such deletions.

5.
Science ; 327(5963): 328-31, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20075252

ABSTRACT

Artemisinin is a plant natural product produced by Artemisia annua and the active ingredient in the most effective treatment for malaria. Efforts to eradicate malaria are increasing demand for an affordable, high-quality, robust supply of artemisinin. We performed deep sequencing on the transcriptome of A. annua to identify genes and markers for fast-track breeding. Extensive genetic variation enabled us to build a detailed genetic map with nine linkage groups. Replicated field trials resulted in a quantitative trait loci (QTL) map that accounts for a significant amount of the variation in key traits controlling artemisinin yield. Enrichment for positive QTLs in parents of new high-yielding hybrids confirms that the knowledge and tools to convert A. annua into a robust crop are now available.


Subject(s)
Antimalarials/metabolism , Artemisia/genetics , Artemisia/metabolism , Artemisinins/metabolism , Chromosome Mapping , Genes, Plant , Quantitative Trait Loci , Crosses, Genetic , DNA, Complementary , Gene Expression Profiling , Genetic Association Studies , Humans , Malaria/drug therapy , Mutation , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL