Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 310
Filter
1.
Prostate ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629217

ABSTRACT

BACKGROUND: Pathogenic germline variants in the mismatch repair (MMR) genes are associated with an increased risk of prostate cancer (PCa). Since 2010 we have recommended MMR carriers annual PSA testing from the age of 40. Prospective studies of the outcome of long-term PSA screening are lacking. This study aimed to investigate the incidence and characteristics of PCa in Norwegian MMR carriers attending annual PSA screening (PSA threshold >3.0 ng/mL) to evaluate whether our recommendations should be continued. METHODS: This is a prospective observational study of 225 male MMR carriers who were recommended annual PSA screening by the Section of Inherited Cancer, Oslo University Hospital from 2010 and onwards. Incidence and tumor characteristics (age, PSA at diagnosis, Gleason score, TNM score) were described. IHC and MSI-analyses were done on available tumors. Standardized incidence ratio (SIR) was calculated based on data from the Cancer Registry of Norway. RESULTS: Twenty-two of 225 (9.8%) had been diagnosed with PCa, including 10/69 (14.5%) MSH2 carriers and 8/61 (13.1%) MSH6 carriers. Ten of 20 (50%) tumors had Gleason score ≥4 + 3 on biopsy and 6/11 (54.5%) had a pathological T3a/b stage. Eight of 17 (47.1%) tumors showed abnormal staining on IHC and 3/13 (23.1%) were MSI-high. SIR was 9.54 (95% CI 5.98-14.45) for all MMR genes, 13.0 (95% CI 6.23-23.9) for MSH2 and 13.74 for MSH6 (95% CI 5.93-27.08). CONCLUSIONS: Our results indicate that the MMR genes, and especially MSH2 and MSH6, are associated with a significant risk of PCa, and a high number of tumors show aggressive characteristics. While the impact of screening on patient outcomes remains to be more firmly established, the high SIR values we observe provide support for continued PSA screening of MSH2 and MSH6 carriers. Studies are needed to provide optimal recommendations for PSA-threshold and to evaluate whether MLH1 and PMS2 carriers should not be recommended screening.

2.
J Pathol ; 262(1): 105-120, 2024 01.
Article in English | MEDLINE | ID: mdl-37850574

ABSTRACT

HOXB13 is a key lineage homeobox transcription factor that plays a critical role in the differentiation of the prostate gland. Several studies have suggested that HOXB13 alterations may be involved in prostate cancer development and progression. Despite its potential biological relevance, little is known about the expression of HOXB13 across the disease spectrum of prostate cancer. To this end, we validated a HOXB13 antibody using genetic controls and investigated HOXB13 protein expression in murine and human developing prostates, localized prostate cancers, and metastatic castration-resistant prostate cancers. We observed that HOXB13 expression increases during later stages of murine prostate development. All localized prostate cancers showed HOXB13 protein expression. Interestingly, lower HOXB13 expression levels were observed in higher-grade tumors, although no significant association between HOXB13 expression and recurrence or disease-specific survival was found. In advanced metastatic prostate cancers, HOXB13 expression was retained in the majority of tumors. While we observed lower levels of HOXB13 protein and mRNA levels in tumors with evidence of lineage plasticity, 84% of androgen receptor-negative castration-resistant prostate cancers and neuroendocrine prostate cancers (NEPCs) retained detectable levels of HOXB13. Notably, the reduced expression observed in NEPCs was associated with a gain of HOXB13 gene body CpG methylation. In comparison to the commonly used prostate lineage marker NKX3.1, HOXB13 showed greater sensitivity in detecting advanced metastatic prostate cancers. Additionally, in a cohort of 837 patients, 383 with prostatic and 454 with non-prostatic tumors, we found that HOXB13 immunohistochemistry had a 97% sensitivity and 99% specificity for prostatic origin. Taken together, our studies provide valuable insight into the expression pattern of HOXB13 during prostate development and cancer progression. Furthermore, our findings support the utility of HOXB13 as a diagnostic biomarker for prostate cancer, particularly to confirm the prostatic origin of advanced metastatic castration-resistant tumors. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Animals , Humans , Male , Mice , Genes, Homeobox , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , United Kingdom
3.
Cancer Res Commun ; 4(1): 152-163, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38112617

ABSTRACT

Fatty acid synthase (FASN) catalyzes the synthesis of long-chain saturated fatty acids and is overexpressed during prostatic tumorigenesis, where it is the therapeutic target in several ongoing trials. However, the mechanism of FASN upregulation in prostate cancer remains unclear. Here, we examine FASN gene CpG methylation pattern by InfiniumEPIC profiling and whole-genome bisulfite sequencing across multiple racially diverse primary and metastatic prostate cancer cohorts, comparing with FASN protein expression as measured by digitally quantified IHC assay and reverse phase protein array analysis or FASN gene expression. We demonstrate that the FASN gene body is hypomethylated and overexpressed in primary prostate tumors compared with benign tissue, and FASN gene methylation is significantly inversely correlated with FASN protein or gene expression in both primary and metastatic prostate cancer. Primary prostate tumors with ERG gene rearrangement have increased FASN expression and we find evidence of FASN hypomethylation in this context. FASN expression is also significantly increased in prostate tumors from carriers of the germline HOXB13 G84E mutation compared with matched controls, consistent with a report that HOXB13 may contribute to epigenetic regulation of FASN in vitro. However, in contrast to previous studies, we find no significant association of FASN expression or methylation with self-identified race in models that include ERG status across two independent primary tumor cohorts. Taken together, these data support a potential epigenetic mechanism for FASN regulation in the prostate which may be relevant for selecting patients responsive to FASN inhibitors. SIGNIFICANCE: Here, we leverage multiple independent primary and metastatic prostate cancer cohorts to demonstrate that FASN gene body methylation is highly inversely correlated with FASN gene and protein expression. This finding may shed light on epigenetic mechanisms of FASN regulation in prostate cancer and provides a potentially useful biomarker for selecting patients in future trials of FASN inhibitors.


Subject(s)
Epigenesis, Genetic , Prostatic Neoplasms , Male , Humans , Epigenesis, Genetic/genetics , Fatty Acid Synthases/genetics , Prostatic Neoplasms/genetics , DNA Methylation/genetics , Fatty Acids , Genomics , Fatty Acid Synthase, Type I/genetics
4.
Eur Urol Oncol ; 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37806842

ABSTRACT

BACKGROUND: Recent reports have uncovered a HOXB13 variant (X285K) predisposing to prostate cancer in men of West African ancestry. The clinical relevance and protein function associated with this inherited variant are unknown. OBJECTIVE: To determine the clinical relevance of HOXB13 (X285K) in comparison with HOXB13 (G84E) and BRCA2 pathogenic/likely pathogenic (P/LP) variants, and to elucidate the oncogenic mechanisms of the X285K protein. DESIGN, SETTING, AND PARTICIPANTS: Real-world data were collected from 21,393 men with prostate cancer undergoing genetic testing from 2019 to 2022, and in vitro cell-line models were established for the evaluation of oncogenic functions associated with the X285K protein. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Genetic testing results were compared among patient groups according to self-reported race/ethnicity, Gleason scores, and American Joint Committee on Cancer stages using the exact test. Oncogenic functions of X285K were evaluated by RNA sequencing, chromatin immunoprecipitation sequencing, and Western blot analyses. RESULTS AND LIMITATIONS: HOXB13 (X285K) was significantly enriched in self-reported Black (1.01%) versus White (0.01%) patients. We observed a trend of more aggressive disease in the HOXB13 (X285K) and BRCA2 P/LP carriers than in the HOXB13 (G84E) carriers. Replacement of the wild-type HOXB13 protein with the X285K protein resulted in a gain of an E2F/MYC signature, validated by the elevated expression of cyclin B1 and c-Myc, without affecting the androgen response signature. Elevated expression of cyclin B1 and c-Myc was explained by enhanced binding of the X285K protein to the promoters and enhancers of these genes. The limitations of the study are the lack of complete clinical outcome data for all patients studied and the use of a single cell line in the functional analysis. CONCLUSIONS: HOXB13 (X285K) is significantly enriched in self-reported Black patients, and X285K carriers detected in the real-world clinical setting have aggressive prostate cancer features similar to the BRCA2 carriers. Functional studies revealed a unique gain-of-function oncogenic mechanism of X285K protein in regulating E2F/MYC signatures. PATIENT SUMMARY: The HOXB13 (X285K) variant is clinically and functionally linked to aggressive prostate cancer, supporting genetic testing for X285K in Black men and early disease screening of carriers of this variant.

6.
Endocr Relat Cancer ; 30(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37140987

ABSTRACT

Prostate cancer (PCa) is the second-most common cause of male cancer-related death in western industrialized countries, and the emergence of metastases is a key challenge in the treatment of PCa. Accumulating studies have shown that long noncoding RNAs (lncRNAs) play an important role in the regulation of diverse cellular and molecular processes during the development and progression of cancer. Here, we utilized a unique cohort of castration-resistant prostate cancer metastases (mCRPC) and corresponding localized tumors and RNA sequencing (RNA-seq). First, we showed that patient-to-patient variability accounted for most of the variance in lncRNA expression between the samples, suggesting that genomic alterations in the samples are the main drivers of lncRNA expression in PCa metastasis. Subsequently, we identified 27 lncRNAs with differential expression (DE-lncRNAs) between metastases and corresponding primary tumors, suggesting that they are mCRPC-specific lncRNAs. Analyses of potential regulation by transcription factors (TFs) revealed that approximately half of the DE-lncRNAs have at least one binding site for the androgen receptor in their regulatory regions. In addition, TF enrichment analysis revealed the enrichment of binding sites for PCa-associated TFs, such as FOXA1 and HOXB13, in the regulatory regions of the DE-lncRNAs. In a cohort of prostatectomy-treated prostate tumors, four of the DE-lncRNAs showed association with progression-free time and two of them (lnc-SCFD2-2 and lnc-R3HCC1L-8) were independent prognostic markers. Our study highlights several mCRPC-specific lncRNAs that might be important in the progression of the disease to the metastatic stage and may also serve as potential biomarkers for aggressive PCa.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , RNA, Long Noncoding , Humans , Male , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prostatic Neoplasms/metabolism , Gene Expression Regulation, Neoplastic
7.
Eur Urol ; 84(1): 13-21, 2023 07.
Article in English | MEDLINE | ID: mdl-36872133

ABSTRACT

BACKGROUND: Genetic factors play an important role in prostate cancer (PCa) susceptibility. OBJECTIVE: To discover common genetic variants contributing to the risk of PCa in men of African ancestry. DESIGN, SETTING, AND PARTICIPANTS: We conducted a meta-analysis of ten genome-wide association studies consisting of 19378 cases and 61620 controls of African ancestry. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Common genotyped and imputed variants were tested for their association with PCa risk. Novel susceptibility loci were identified and incorporated into a multiancestry polygenic risk score (PRS). The PRS was evaluated for associations with PCa risk and disease aggressiveness. RESULTS AND LIMITATIONS: Nine novel susceptibility loci for PCa were identified, of which seven were only found or substantially more common in men of African ancestry, including an African-specific stop-gain variant in the prostate-specific gene anoctamin 7 (ANO7). A multiancestry PRS of 278 risk variants conferred strong associations with PCa risk in African ancestry studies (odds ratios [ORs] >3 and >5 for men in the top PRS decile and percentile, respectively). More importantly, compared with men in the 40-60% PRS category, men in the top PRS decile had a significantly higher risk of aggressive PCa (OR = 1.23, 95% confidence interval = 1.10-1.38, p = 4.4 × 10-4). CONCLUSIONS: This study demonstrates the importance of large-scale genetic studies in men of African ancestry for a better understanding of PCa susceptibility in this high-risk population and suggests a potential clinical utility of PRS in differentiating between the risks of developing aggressive and nonaggressive disease in men of African ancestry. PATIENT SUMMARY: In this large genetic study in men of African ancestry, we discovered nine novel prostate cancer (PCa) risk variants. We also showed that a multiancestry polygenic risk score was effective in stratifying PCa risk, and was able to differentiate risk of aggressive and nonaggressive disease.


Subject(s)
Genetic Predisposition to Disease , Prostatic Neoplasms , Male , Humans , Genome-Wide Association Study , Prostatic Neoplasms/genetics , Prostatic Neoplasms/epidemiology , Risk Factors , Black People/genetics
8.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: mdl-36752203

ABSTRACT

The genomic and immune landscapes of prostate cancer differ by self-identified race. However, few studies have examined the genome-wide copy number landscape and immune content of matched cohorts with genetic ancestry data and clinical outcomes. Here, we assessed prostate cancer somatic copy number alterations (sCNA) and tumor immune content of a grade-matched, surgically treated cohort of 145 self-identified Black (BL) and 145 self-identified White (WH) patients with genetic ancestry estimation. A generalized linear model adjusted with age, preoperative prostate-specific antigen (PSA), and Gleason Grade Group and filtered for germline copy number variations (gCNV) identified 143 loci where copy number varied significantly by percent African ancestry, clustering on chromosomes 6p, 10q, 11p, 12p, and 17p. Multivariable Cox regression models adjusted for age, preoperative PSA levels, and Gleason Grade Group revealed that chromosome 8q gains (including MYC) were significantly associated with biochemical recurrence and metastasis, independent of genetic ancestry. Finally, Treg density in BL and WH patients was significantly correlated with percent genome altered, and these findings were validated in the TCGA cohort. Taken together, our findings identify specific sCNA linked to genetic ancestry and outcome in primary prostate cancer and demonstrate that Treg infiltration varies by global sCNA burden in primary disease.


Subject(s)
Prostatic Neoplasms , Humans , Male , DNA Copy Number Variations , Neoplasm Grading , Proportional Hazards Models , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/ethnology , Prostatic Neoplasms/genetics , Racial Groups
9.
Prostate ; 83(5): 454-461, 2023 04.
Article in English | MEDLINE | ID: mdl-36567534

ABSTRACT

BACKGROUND: Although men of African ancestry (AA) have the highest mortality rate from prostate cancer (PCa), relatively little is known about the germline variants that are associated with PCa risk in AA men. The goal of this study is to systematically evaluate rare, recurrent nonsynonymous variants across the exome for their association with PCa in AA men. METHODS: Whole exome sequencing (WES) of germline DNA in two AA PCa patient cohorts of Johns Hopkins Hospital (N = 960) and Wayne State University (N = 747) was performed. All nonsynonymous variants present in both case cohorts, with a carrier rate between 0.5% and 1%, were identified. Their carrier rates were compared with rates from 8128 African/African American (AFR) control subjects from The Genome Aggregation Database (gnomAD) using Fisher's exact test. Significant variants, defined as false discovery rate (FDR) adjusted p-value ≤ 0.05, were further evaluated in AA PCa cases (N = 132) and controls (N = 1184) from the UK Biobank (UKB). RESULTS: Two variants reached a pre-specified statistical significance level. The first was p.R14Q in GPRC5C (found in 0.47% of PCa cases and 0.01% of population controls); odds ratio (OR) for PCa was 37.46 (95% confidence interval CI 4.68-299.72), pexact = 7.01E-06, FDR-adjusted p-value = 0.05. The second was p.R511Q in IGF1R (found in 0.53% of PCa cases and 0.01% of population controls); OR for PCa was 21.54 (95%CI 4.65-99.76), pexact = 5.51E-06, FDR-adjusted p-value = 0.05. The mean percentage of African ancestry was similar between variant carriers and noncarriers of each variant, p > 0.05. In the UKB AA men, GPRC5C R14Q was 0.76% and 0.08% in cases and controls, respectively, OR for PCa was 9.00 (95%CI 0.56-145.23), pexact = 0.19. However, IGF1R R511Q was not found in cases or controls. CONCLUSIONS: This WES study identified two rare, recurrent nonsynonymous PCa risk-associated variants in AA. Confirmation in additional large populations of AA PCa cases and controls is required.


Subject(s)
Germ-Line Mutation , Prostatic Neoplasms , Humans , Male , Black or African American , Germ Cells , Heterozygote , Prostatic Neoplasms/ethnology , Prostatic Neoplasms/genetics , Black People
10.
Eur Urol Open Sci ; 43: 54-61, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36353071

ABSTRACT

Background: The association between benign prostatic hyperplasia (BPH) and prostate cancer (PCa) remains controversial, largely due to a detection bias in traditional observational studies. Objective: To assess the association between BPH and PCa using inherited single nucleotide polymorphisms (SNPs). Design setting and participants: The participants were White men from the population-based UK Biobank (UKB). Outcome measurements and statistical analysis: The association between BPH and PCa was tested for (1) phenotypic correlation using chi-square, (2) genetic correlation (r g) based on genome-wide SNPs using linkage disequilibrium score regression, and (3) cross-disease genetic associations based on known risk-associated SNPs (15 for BPH and 239 for PCa), individually and cumulatively using genetic risk score (GRS). Results and limitations: Among 214 717 White men in the UKB, 24 623 (11%) and 14 311 (6.7%) had a diagnosis of BPH and PCa, respectively. Diagnoses of these two diseases were significantly correlated (χ2 = 1862.80, p < 0.001). A significant genetic correlation was found (r g = 0.16; 95% confidence interval 0.03-0.28, p = 0.01). In addition, significant cross-disease genetic associations for established risk-associated SNPs were also found. Among the 250 established genome-wide association study-significant SNPs of PCa or BPH, 49 were significantly associated with the risk of the other disease at p < 0.05, significantly more than expected by chance (N = 12, p < 0.001; χ2 test). Furthermore, significant cross-disease GRS associations were also found; GRSBPH was significantly associated with PCa risk (odds ratio [OR] = 1.26 [1.18-1.36], p < 0.001), and GRSPCa was significantly associated with BPH risk (OR = 1.03 [1.02-1.04], p < 0.001). Moreover, GRSBPH was significantly and inversely associated with lethal PCa risk in a PCa case-case analysis (OR = 0.58 [0.41-0.81], p = 0.002). Only White men were studied. Conclusions: BPH and PCa share common inherited genetics, which suggests that the phenotypic association of these two diseases in observational studies is not entirely caused by the detection bias. Patient summary: For the first time, we found that benign prostatic hyperplasia and prostate cancer are genetically related. This finding may have implications in disease etiology and risk stratification.

11.
Eur Urol Open Sci ; 45: 23-30, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36353656

ABSTRACT

Background: Reliability of prostate cancer (PCa) genetic risk score (GRS), that is, the concordance between its estimated risk and observed risk, is required for genetic testing at the individual level. Reliability data are lacking for non-European racial/ethnic populations, which hinders its clinical use and exacerbates racial disparity. Objective: To calibrate PCa ancestry-specific GRS in four racial/ethnic populations. Design setting and participants: PCa ancestry-specific GRSs, calculated from published risk-associated single-nucleotide polymorphisms in corresponding racial/ethnic populations, were evaluated in men who participated in 23andMe, Inc. genetic testing and consented for research, including 888 086 of European (EUR), 81 109 of Hispanic (HIS), 30 472 of African (AFR), and 13 985 of East Asian (EAS) ancestry, as classified by 23andMe's ancestry composition algorithm. Outcome measurements and statistical analysis: The concordance between the observed and estimated PCa risks at ten ancestry-specific GRS deciles was measured primarily by using the calibration slope (ß), where 1 represents a perfect calibration. Platt scaling was used to correct the systematic bias of GRS. Results and limitations: A linear trend of an increased observed PCa prevalence in men with higher ancestry-specific GRS deciles was found in each racial population (all p -trend < 0.001). A calibration analysis revealed a systematic bias of GRS; ß was considerably lower than 1 (0.73, 0.64, 0.66, and 0.75 in EUR, HIS, AFR, and EAS ancestries, respectively). This bias was reduced after the Platt scaling correction: ß for scaled GRS in the testing dataset (40% of individuals) approximated 1 for all groups (0.95, 1.05, 1.02, and 1.01 in EUR, HIS, AFR, and EAS populations, respectively). The generalizability of the Platt correction needs to be validated in independent cohorts. Conclusions: A systematic bias of ancestry-specific GRS in the direction of an overestimated risk for men in the highest decile was found in EUR and non-EUR populations. GRS is well calibrated after correction and is appropriate for genetic testing at the individual level for personalized PCa screening. Patient summary: A corrected genetic risk score is more reliable (supported by the observed prostate cancer [PCa] risk) and appropriate for genetic testing for personalized PCa screening.

12.
Mol Cancer Res ; 20(7): 1013-1020, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35452513

ABSTRACT

A limited number of cell lines have fueled the majority of preclinical prostate cancer research, but their genomes remain incompletely characterized. Here, we utilized whole-genome linked-read sequencing for comprehensive characterization of phased mutations and rearrangements in the most commonly used cell lines in prostate cancer research including PC3, LNCaP, DU145, CWR22Rv1, VCaP, LAPC4, MDA-PCa-2b, RWPE-1, and four derivative castrate-resistant (CR) cell lines LNCaP_Abl, LNCaP_C42b, VCaP-CR, and LAPC4-CR. Phasing of mutations allowed determination of "gene-level haplotype" to assess whether genes harbored heterozygous mutations in one or both alleles. Phased structural variant analysis allowed identification of complex rearrangement chains consistent with chromothripsis and chromoplexy. In addition, comparison of parental and derivative CR lines revealed previously known and novel genomic alterations associated with the CR phenotype. IMPLICATIONS: This study therefore comprehensively characterized phased genomic alterations in the commonly used prostate cancer cell lines, providing a useful resource for future prostate cancer research.


Subject(s)
Prostatic Neoplasms , Cell Line , Cell Line, Tumor , Gene Rearrangement , Humans , Male , Mutation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Whole Genome Sequencing
13.
Prostate Cancer Prostatic Dis ; 25(3): 422-430, 2022 09.
Article in English | MEDLINE | ID: mdl-35347252

ABSTRACT

BACKGROUND: Many studies on prostate cancer (PCa) germline variants have been published in the last 15 years. This review critically assesses their clinical validity and explores their utility in prediction of PCa detection rates from prostate biopsy. METHODS: An integrative review was performed to (1) critically synthesize findings on PCa germline studies from published papers since 2016, including risk-associated single nucleotide polymorphisms (SNPs), polygenic risk score methods such as genetic risk score (GRS), and rare pathogenic mutations (RPMs); (2) exemplify the findings in a large population-based cohort from the UK Biobank (UKB); (3) identify gaps for implementing inherited risk assessment in clinic based on experience from a healthcare system; (4) evaluate available GRS data on their clinical utility in predicting PCa detection rates from prostate biopsies; and (5) describe a prospective germline-based biopsy trial to address existing gaps. RESULTS: SNP-based GRS and RPMs in four genes (HOXB13, BRCA2, ATM, and CHEK2) were significantly and consistently associated with PCa risk in large well-designed studies. In the UKB, positive family history, RPMs in the four implicated genes, and a high GRS (>1.5) identified 8.12%, 1.61%, and 17.38% of men to be at elevated PCa risk, respectively, with hazard ratios of 1.84, 2.74, and 2.39, respectively. Additionally, the performance of GRS for predicting PCa detection rate on prostate biopsy was consistently supported in several retrospective analyses of transrectal ultrasound (TRUS)-biopsy cohorts. Prospective studies evaluating the performance of all three inherited measures in predicting PCa detection rate from contemporary multiparametric MRI (mpMRI)-based biopsy are lacking. A multicenter germline-based biopsy trial to address these gaps is warranted. CONCLUSIONS: The complementary performance of three inherited risk measures in PCa risk stratification is consistently supported. Their clinical utility in predicting PCa detection rate, if confirmed in prospective clinical trials, may improve current decision-making for prostate biopsy.


Subject(s)
Prostate , Prostatic Neoplasms , Humans , Image-Guided Biopsy/methods , Magnetic Resonance Imaging , Male , Multicenter Studies as Topic , Prospective Studies , Prostate/diagnostic imaging , Prostate/pathology , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Retrospective Studies , Risk Assessment/methods
14.
Curr Opin Oncol ; 34(3): 212-218, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35238838

ABSTRACT

PURPOSE OF REVIEW: This review provides an overview of the current role of genetic testing in prostate cancer screening, diagnosis, and treatment. RECENT FINDINGS: Recent studies have uncovered few but highly penetrant rare pathogenic mutations (RPMs), in genes, such as BRCA2, with strong prostate cancer risk and outcomes associations. Over 260 single nucleotide polymorphisms (SNPs) have also been identified, each associated with small incremental prostate cancer risk and when combined in a polygenic risk score (PRS), they provide strong prostate cancer risk prediction but do not seem to predict outcomes. Tumor tissue sequencing can also help identify actionable somatic mutations in many patients with advanced prostate cancer and inform on their risk of harboring a germline pathogenic mutation. SUMMARY: RPM testing, PRS testing, and tumor sequencing all have current and/or potential future roles in personalized prostate cancer care.


Subject(s)
Prostatic Neoplasms , Early Detection of Cancer , Genes, BRCA2 , Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation , Humans , Male , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy
15.
J Clin Invest ; 132(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35104804

ABSTRACT

Prostate cancer exerts a greater toll on African American men than on White men of European descent (hereafter referred to as European American men): the disparity in incidence and mortality is greater than that of any other common cancer. The disproportionate impact of prostate cancer on Black men has been attributed to the genetics of African ancestry, to diet and lifestyle risk factors, and to unequal access to quality health care. In this Review, all of these influences are considered in the context of the evolving understanding that chronic or recurrent inflammatory processes drive prostatic carcinogenesis. Studies of inherited susceptibility highlight the contributions of genes involved in prostate cell and tissue repair (BRCA1/2, ATM) and regeneration (HOXB13 and MYC). Social determinants of health appear to accentuate these genetic influences by fueling prostate inflammation and associated cell and genome damage. Molecular characterization of the prostate cancers that arise in Black versus White men further implicates this inflammatory microenvironment in disease behavior. Yet, when Black and White men with similar grade and stage of prostate cancer are treated equally, they exhibit equivalent outcomes. The central role of prostate inflammation in prostate cancer development and progression augments the impact of the social determinants of health on disease pathogenesis. And, when coupled with poorer access to high-quality treatment, these inequities result in a disparate burden of prostate cancer on African American men.


Subject(s)
Black or African American/genetics , Genetic Predisposition to Disease , Health Inequities , Prostatic Neoplasms , White People/genetics , Humans , Male , Prostatic Neoplasms/ethnology , Prostatic Neoplasms/genetics , Risk Factors
16.
Prostate Cancer Prostatic Dis ; 25(4): 749-754, 2022 04.
Article in English | MEDLINE | ID: mdl-35149774

ABSTRACT

BACKGROUND: Germline mutations in DNA repair genes and KLK3 have been associated with adverse prostate cancer (PCa) outcomes in separate studies but never jointly. The objective of this study is to simultaneously assess these two types of germline mutations. METHODS: Germline rare pathogenic mutations (RPMs) in 9 commonly tested DNA repair genes and KLK3 variants were tested for their associations with PCa progression in two PCa cohorts: (1) hospital-based PCa patients treated with radical surgery at the Johns Hopkins Hospital (JHH, N = 1943), and (2) population-based PCa patients in the UK Biobank (UKB, N = 10,224). Progression was defined as metastasis and/or PCa-specific death (JHH) and PCa-specific death (UKB). RPMs of DNA repair genes were annotated using the American College of Medical Genetics recommendations. Known KLK3 variants were genotyped. Associations were tested using a logistic regression model adjusting for genetic background (top ten principal components). RESULTS: In the JHH, 3.2% (59/1,843) of patients had RPMs in 9 DNA repair genes; odds ratio (OR, 95% confidence interval) for progression was 2.99 (1.6-5.34), P < 0.001. In comparison, KLK3 I179T mutation was more common; 9.7% (189/1,943) carried the mutation, OR = 1.6 (1.05-2.37), P = 0.02. Similar results were found in the UKB. Both types of mutations remained statistically significant in multivariable analyses. In the combined cohort, compared to patients without any mutations (RPMs-/KLK3-), RPMs-/KLK3+ patients had modestly increased risk for progression [OR = 1.54 (1.15-2.02), P = 0.003], and RPMs+/KLK3+ patients had greatly increased risk for progression [OR = 5.41 (2.04-12.99), P < 0.001]. Importantly, associations of mutations with PCa progression were found in patients with clinically defined low- or intermediate risk for disease progression. CONCLUSIONS: Two different cohorts consistently demonstrate that KLK3 I179T and RPMs of nine commonly tested DNA repair genes are complementary for predicting PCa progression. These results are highly relevant to PCa germline testing and provide critical information for KLK3 I179T to be considered in guidelines.


Subject(s)
Germ-Line Mutation , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostate/pathology , Genotype , DNA Repair/genetics , Genetic Predisposition to Disease
17.
Eur Urol ; 81(5): 458-462, 2022 05.
Article in English | MEDLINE | ID: mdl-35031163

ABSTRACT

A rare African ancestry-specific germline deletion variant in HOXB13 (X285K, rs77179853) was recently reported in Martinican men with early-onset prostate cancer. Given the role of HOXB13 germline variation in prostate cancer, we investigated the association between HOXB13 X285K and prostate cancer risk in a large sample of 22 361 African ancestry men, including 11 688 prostate cancer cases. The risk allele was present only in men of West African ancestry, with an allele frequency in men that ranged from 0.40% in Ghana and 0.31% in Nigeria to 0% in Uganda and South Africa, with a range of frequencies in men with admixed African ancestry from North America and Europe (0-0.26%). HOXB13 X285K was associated with 2.4-fold increased odds of prostate cancer (95% confidence interval [CI] = 1.5-3.9, p = 2 × 10-4), with greater risk observed for more aggressive and advanced disease (Gleason ≥8: odds ratio [OR] = 4.7, 95% CI = 2.3-9.5, p = 2 × 10-5; stage T3/T4: OR = 4.5, 95% CI = 2.0-10.0, p = 2 × 10-4; metastatic disease: OR = 5.1, 95% CI = 1.9-13.7, p = 0.001). We estimated that the allele arose in West Africa 1500-4600 yr ago. Further analysis is needed to understand how the HOXB13 X285K variant impacts the HOXB13 protein and function in the prostate. Understanding who carries this mutation may inform prostate cancer screening in men of West African ancestry. PATIENT SUMMARY: A rare African ancestry-specific germline deletion in HOXB13, found only in men of West African ancestry, was reported to be associated with an increased risk of overall and advanced prostate cancer. Understanding who carries this mutation may help inform screening for prostate cancer in men of West African ancestry.


Subject(s)
Early Detection of Cancer , Prostatic Neoplasms , Case-Control Studies , Genetic Predisposition to Disease , Germ Cells/pathology , Germ-Line Mutation , Homeodomain Proteins/genetics , Humans , Male , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
18.
Cancer Immunol Immunother ; 71(4): 943-951, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34533610

ABSTRACT

Pathogenic mutations in homologous recombination (HR) DNA repair genes may be associated with increased tumor mutational burden and numbers of tumor-infiltrating lymphocytes (TIL). Though HR-deficient prostate tumors have been anecdotally associated with improved responses to immunotherapy, it is unclear whether HR mutations or HR deficiency (HRD) scores predict for increased T-cell densities in this cancer. We evaluated 17 primary prostate tumors from patients with pathogenic germline BRCA2 mutations (gBRCA2) and 21 primary prostate tumors from patients with pathogenic germline ATM (gATM) mutations, which were compared to 19 control tumors lacking HR gene mutations, as well as the TCGA prostate cancer cohort. HRD score was estimated by targeted sequencing (gBRCA2 and gATM) or by SNP microarray (TCGA). Tumor-associated T-cell densities were assessed using validated automated digital image analysis of CD8 and FOXP3 immunostaining (gBRCA2 or gATM) or by methylCIBERSORT (TCGA). CD8 + and FOXP3 + T-cell densities were significantly correlated with each other in gBRCA2 and gATM cases. There was no significant difference between CD8 + or FOXP3 + TIL densities in gBRCA2 or gATM cases compared to controls. In the TCGA cohort, HRD score was associated with predicted CD8 + and FOXP3 + TILs. Associations were also seen for HRD score and TIL density among the germline-mutated cases. In contrast to mismatch repair-deficient primary prostate tumors, cancers from germline BRCA2 or ATM mutation carriers do not appear to be associated with elevated TIL density. However, measures of genomic scarring, such as HRD score, may be associated with increased tumor-infiltrating T-cells.


Subject(s)
Germ-Line Mutation , Prostatic Neoplasms , Ataxia Telangiectasia Mutated Proteins/genetics , BRCA2 Protein/genetics , Biomarkers, Tumor/genetics , Genes, BRCA2 , Humans , Lymphocytes, Tumor-Infiltrating , Male , Prostatic Neoplasms/genetics
19.
Br J Cancer ; 126(5): 791-796, 2022 03.
Article in English | MEDLINE | ID: mdl-34799695

ABSTRACT

BACKGROUND: Recently, a novel HOXB13 variant (X285K) was observed in men of African descent with prostate cancer (PCa) in Martinique. Little is known about this or other variants in HOXB13 which may play a role in PCa susceptibility in African-American (AA) men. METHODS: We sequenced HOXB13 in an AA population of 1048 men undergoing surgical treatment for PCa at Johns Hopkins Hospital. RESULTS: Seven non-synonymous germline variants were observed in the patient population. While six of these variants were seen only once, X285K was found in eight patients. In a case-case analysis, we find that carriers of this latter variant are at increased risk of clinically significant PCa (1.2% carrier rate in Gleason Score ≥7 PCa vs. 0% in Gleason Score <7 PCa, odds ratio, OR = inf; 95% Confidence Interval, 95%CI:1.05-inf, P = 0.028), as well as PCa with early age at diagnosis (2.4% carrier rate in patients <50 year vs. 0.5% carrier rate in patients ≥50 year, OR = 5.25, 95% CI:1.00-28.52, P = 0.03). CONCLUSIONS: While this variant is rare in the AA population (~0.2% MAF), its ancestry-specific occurrence and apparent preferential association with risk for the more aggressive disease at an early age emphasizes its translational potential as an important, novel PCa susceptibility marker in the high-risk AA population.


Subject(s)
Amino Acid Substitution , Black or African American/genetics , Exome Sequencing/methods , Homeodomain Proteins/genetics , Prostatic Neoplasms/surgery , Adult , Age of Onset , Genetic Predisposition to Disease , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neoplasm Grading , Prostatectomy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Retrospective Studies
20.
Prostate ; 82(1): 107-119, 2022 01.
Article in English | MEDLINE | ID: mdl-34674288

ABSTRACT

BACKGROUND: Germline mutations in several genes, mainly DNA repair genes, have been associated with prostate cancer (PCa) progression. However, primarily due to the rarity of mutations, statistical evidence for these associations is not consistently established. The objective of this study is to synthesize evidence from multiple studies using a meta-analysis. METHODS: Genes analyzed were chosen based on National Comprehensive Cancer Network guidelines recommendations (10 genes) and a commonly reported gene (NBN). PCa progression in this analysis was defined as either having metastases or PCa-specific mortality. We searched PubMed for papers published before April 26, 2021, using selected keywords. Pooled odds ratio (OR) was estimated in all races and Caucasians-only using both fixed- and random-effect models. RESULTS: The search identified 1028 papers and an additional five from a manual review of references. After a manual process that excluded noneligible studies, 11 papers remained, including a total of 3944 progressors and 20,054 nonprogressors. Combining results from these eligible studies, mutation carrier rates were significantly higher in progressors than nonprogressors for NBN, BRCA2, ATM (under both fixed- and random-effect models), for CHEK2 (under fixed-effect model only), and for PALB2 (under random-effect model only), p < 0.05. Pooled OR (95% confidence interval) was 6.38 (2.25-18.05), 3.41 (2.31; 5.03), 1.93 (1.17-3.20), and 1.53 (1.00-2.33) for NBN, BRCA2, ATM, and CHEK2, respectively, under fixed-effect model and 2.63 (1.12-6.13) for PALB2 under random-effect model. No significant association was found for the six remaining genes. Certainty of evidence was low for many genes due primarily to the limited number of eligible studies and mutation carriers. CONCLUSIONS: Statistical evidence for five genes was obtained in this first meta-analysis of germline mutations and PCa progression. While these results may help urologists and genetic counselors interpret germline testing results for PCa progression, more original studies are needed.


Subject(s)
DNA Repair/genetics , Neoplasm Metastasis/genetics , Prostatic Neoplasms , Ataxia Telangiectasia Mutated Proteins/genetics , BRCA2 Protein/genetics , Cell Cycle Proteins/genetics , Checkpoint Kinase 2/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Male , Nuclear Proteins/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/mortality , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...