Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 42: 108138, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35496485

ABSTRACT

Groundwater with high fluoride concentrations has been recognized as one of the serious concerns worldwide. Besides, the fluoride released into the groundwater by slow dissolution of fluoride-containing rocks, various industries also contribute to fluoride pollution [1]. Excess intake of fluoride leads to various health problems such as dental and skeletal fluorosis, cancer, infertility, brain damage, thyroid diseases, etc. [2]. On the other hand, bromide is naturally present in surface and groundwater sources. However, during the chlorination process, bromide can be oxidized to HOBr, which can react with natural organic matter in water to form brominated organic disinfection byproducts, which are very harmful to human health [3]. Among various methods for water treatment, the adsorption process has been widely used and seems to be an efficient and attractive method for the removal of many contaminants in water, such as anions, in terms of cost, simplicity of design, and operation [4], [5]. In the past years, xerogels and carbon xerogels, a new type of adsorbents, which are synthesized by the sol-gel polycondensation of resorcinol and formaldehyde, have gained attention due to their moldable texture and chemical properties [6]. Moreover, melamine addition in resorcinol and formaldehyde xerogels adds basic groups on its surface, favouring Lewis acid-base interactions between xerogels and other components by adsorption [7]. In this data article, the synthesis of three resorcinol-formaldehyde (R/F) xerogels with an increasing amount of melamine (M) was carried out by colloidal polymerization (molar ratios of M/R = 0.5, M/R = 1.0, and M/R = 2.0). Additionally, samples of M/R = 0.5 xerogel were carbonized at 400, 450, and 550 °C under an inert atmosphere to increase their specific area. Organic and carbon xerogels obtained were characterized by FTIR, TGA, SEM, Physisorption of N2, and the pH at the point of zero charge (pHPZC). All organic xerogels were also tested as adsorbents on the removal of fluoride and bromide ions from aqueous phase. The Freundlich, Langmuir, and Radke-Prausnitz isotherm models were applied to interpret the experimental data from adsorption equilibrium. Additionally, the data of the mass of the xerogel needed to remove fluoride and bromide from groundwater and fulfill the maximum concentration levels are also included.

2.
Int J Biol Macromol ; 183: 2293-2304, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34097967

ABSTRACT

In this work, the synthesis of crosslinked chitosan hydrogels was performed by ionic and covalent interactions using tripolyphosphate (TPP) and formaldehyde (CH2O), respectively. The hydrogels synthesis was performed using a D-Optimal combined experiment design with two mixing variables, A and B representing the TPP weight fraction (slack variable) and CH2O weight fraction, respectively, and three (3) process variables C-chitosan concentration, D-cross-linker concentration, and E-Contact time. The response variables studied were the point of zero charge (pHPZC), the swelling ratio (SW), and the equilibrium water content (EWC), which are relevant physicochemical properties in applications such as the pollutant removal from water. According to the ANOVA results, the model obtained was significant; this means it can be adequately used to predicting pHPZC, SW, and EWC from the mixing and process variables, obtaining coefficients of determination R2 of 0.9572, 0.8900, and 0.8447, respectively. The pHPZC is affected by chitosan concentration, while the crosslinker concentration influences the SW, and the contact time most significantly affected the EWC. Morphology and hardness tests, thermal stability, infrared spectroscopy, and scanning electron microscopy, allowed verifying the types of crosslinking of chitosan with TPP and CH2O.


Subject(s)
Chitosan/chemistry , Cross-Linking Reagents/chemistry , Formaldehyde/chemistry , Polyphosphates/chemistry , Hardness , Hydrogels , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Surface Properties , Temperature , Time Factors
3.
Environ Sci Pollut Res Int ; 24(32): 25034-25046, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28920151

ABSTRACT

Metallurgical slag was used for the simultaneous removal of high concentrations of arsenite and arsenate from laboratory solutions and severely contaminated groundwater. Apart from demonstrating the high efficiency of arsenic removal in presence of competing species, the work aims to explore the physicochemical mechanisms of the process by means of microscopy observation and a detailed statistical analysis of existing kinetic and isotherm equations. Fitting was performed by non-linear least squares using weighted residuals; ANOVA and bootstrap methods were used to compare the models. Literature suggests that the metal oxides in the slag are efficient adsorbents of As(III) and (V). However, the low surface area of the slag precludes adsorption; SEM observation provide evidence of a mechanism of co-precipitation of lixiviated cations with contaminant anions. The reaction kinetics provide essential information on the interaction between the contaminants, particularly on the common ion effect in groundwater. The Fritz-Schlünder isotherm allows modelling the saturation effect at low slag doses. The efficiency of the process is demonstrated by an arsenic removal of 99% in groundwater using 4-g slag/L, resulting in an effluent with 0.01 mg As/L, which is below Mexican and international standards for drinking water.


Subject(s)
Arsenates/chemistry , Arsenites/chemistry , Chemical Precipitation , Groundwater/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Anions/chemistry , Groundwater/chemistry , Industrial Waste/analysis , Metallurgy
SELECTION OF CITATIONS
SEARCH DETAIL