Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur Radiol ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507053

ABSTRACT

OBJECTIVE: To test the ability of high-performance machine learning (ML) models employing clinical, radiological, and radiomic variables to improve non-invasive prediction of the pathological status of prostate cancer (PCa) in a large, single-institution cohort. METHODS: Patients who underwent multiparametric MRI and prostatectomy in our institution in 2015-2018 were considered; a total of 949 patients were included. Gradient-boosted decision tree models were separately trained using clinical features alone and in combination with radiological reporting and/or prostate radiomic features to predict pathological T, pathological N, ISUP score, and their change from preclinical assessment. Model behavior was analyzed in terms of performance, feature importance, Shapley additive explanation (SHAP) values, and mean absolute error (MAE). The best model was compared against a naïve model mimicking clinical workflow. RESULTS: The model including all variables was the best performing (AUC values ranging from 0.73 to 0.96 for the six endpoints). Radiomic features brought a small yet measurable boost in performance, with the SHAP values indicating that their contribution can be critical to successful prediction of endpoints for individual patients. MAEs were lower for low-risk patients, suggesting that the models find them easier to classify. The best model outperformed (p ≤ 0.0001) clinical baseline, resulting in significantly fewer false negative predictions and overall was less prone to under-staging. CONCLUSIONS: Our results highlight the potential benefit of integrative ML models for pathological status prediction in PCa. Additional studies regarding clinical integration of such models can provide valuable information for personalizing therapy offering a tool to improve non-invasive prediction of pathological status. CLINICAL RELEVANCE STATEMENT: The best machine learning model was less prone to under-staging of the disease. The improved accuracy of our pathological prediction models could constitute an asset to the clinical workflow by providing clinicians with accurate pathological predictions prior to treatment. KEY POINTS: • Currently, the most common strategies for pre-surgical stratification of prostate cancer (PCa) patients have shown to have suboptimal performances. • The addition of radiological features to the clinical features gave a considerable boost in model performance. Our best model outperforms the naïve model, avoiding under-staging and resulting in a critical advantage in the clinic. •Machine learning models incorporating clinical, radiological, and radiomics features significantly improved accuracy of pathological prediction in prostate cancer, possibly constituting an asset to the clinical workflow.

2.
Cancers (Basel) ; 15(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37686665

ABSTRACT

This review provides a formal overview of current automatic segmentation studies that use deep learning in radiotherapy. It covers 807 published papers and includes multiple cancer sites, image types (CT/MRI/PET), and segmentation methods. We collect key statistics about the papers to uncover commonalities, trends, and methods, and identify areas where more research might be needed. Moreover, we analyzed the corpus by posing explicit questions aimed at providing high-quality and actionable insights, including: "What should researchers think about when starting a segmentation study?", "How can research practices in medical image segmentation be improved?", "What is missing from the current corpus?", and more. This allowed us to provide practical guidelines on how to conduct a good segmentation study in today's competitive environment that will be useful for future research within the field, regardless of the specific radiotherapeutic subfield. To aid in our analysis, we used the large language model ChatGPT to condense information.

3.
Cancers (Basel) ; 15(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37046683

ABSTRACT

AIMS: To assess whether CT-based radiomics and blood-derived biomarkers could improve the prediction of overall survival (OS) and locoregional progression-free survival (LRPFS) in patients with oropharyngeal cancer (OPC) treated with curative-intent RT. METHODS: Consecutive OPC patients with primary tumors treated between 2005 and 2021 were included. Analyzed clinical variables included gender, age, smoking history, staging, subsite, HPV status, and blood parameters (baseline hemoglobin levels, neutrophils, monocytes, and platelets, and derived measurements). Radiomic features were extracted from the gross tumor volumes (GTVs) of the primary tumor using pyradiomics. Outcomes of interest were LRPFS and OS. Following feature selection, a radiomic score (RS) was calculated for each patient. Significant variables, along with age and gender, were included in multivariable analysis, and models were retained if statistically significant. The models' performance was compared by the C-index. RESULTS: One hundred and five patients, predominately male (71%), were included in the analysis. The median age was 59 (IQR: 52-66) years, and stage IVA was the most represented (70%). HPV status was positive in 63 patients, negative in 7, and missing in 35 patients. The median OS follow-up was 6.3 (IQR: 5.5-7.9) years. A statistically significant association between low Hb levels and poorer LRPFS in the HPV-positive subgroup (p = 0.038) was identified. The calculation of the RS successfully stratified patients according to both OS (log-rank p < 0.0001) and LRPFS (log-rank p = 0.0002). The C-index of the clinical and radiomic model resulted in 0.82 [CI: 0.80-0.84] for OS and 0.77 [CI: 0.75-0.79] for LRPFS. CONCLUSIONS: Our results show that radiomics could provide clinically significant informative content in this scenario. The best performances were obtained by combining clinical and quantitative imaging variables, thus suggesting the potential of integrative modeling for outcome predictions in this setting of patients.

4.
BMC Med Imaging ; 23(1): 32, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774463

ABSTRACT

BACKGROUND: Contouring of anatomical regions is a crucial step in the medical workflow and is both time-consuming and prone to intra- and inter-observer variability. This study compares different strategies for automatic segmentation of the prostate in T2-weighted MRIs. METHODS: This study included 100 patients diagnosed with prostate adenocarcinoma who had undergone multi-parametric MRI and prostatectomy. From the T2-weighted MR images, ground truth segmentation masks were established by consensus from two expert radiologists. The prostate was then automatically contoured with six different methods: (1) a multi-atlas algorithm, (2) a proprietary algorithm in the Syngo.Via medical imaging software, and four deep learning models: (3) a V-net trained from scratch, (4) a pre-trained 2D U-net, (5) a GAN extension of the 2D U-net, and (6) a segmentation-adapted EfficientDet architecture. The resulting segmentations were compared and scored against the ground truth masks with one 70/30 and one 50/50 train/test data split. We also analyzed the association between segmentation performance and clinical variables. RESULTS: The best performing method was the adapted EfficientDet (model 6), achieving a mean Dice coefficient of 0.914, a mean absolute volume difference of 5.9%, a mean surface distance (MSD) of 1.93 pixels, and a mean 95th percentile Hausdorff distance of 3.77 pixels. The deep learning models were less prone to serious errors (0.854 minimum Dice and 4.02 maximum MSD), and no significant relationship was found between segmentation performance and clinical variables. CONCLUSIONS: Deep learning-based segmentation techniques can consistently achieve Dice coefficients of 0.9 or above with as few as 50 training patients, regardless of architectural archetype. The atlas-based and Syngo.via methods found in commercial clinical software performed significantly worse (0.855[Formula: see text]0.887 Dice).


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/diagnostic imaging , Image Processing, Computer-Assisted/methods , Algorithms , Prostatic Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods
5.
Radiother Oncol ; 178: 109424, 2023 01.
Article in English | MEDLINE | ID: mdl-36435336

ABSTRACT

BACKGROUND AND PURPOSE: Radiomics enables the mining of quantitative features from medical images. The influence of the radiomic feature extraction software on the final performance of models is still a poorly understood topic. This study aimed to investigate the ability of radiomic features extracted by two different radiomic platforms to predict clinical outcomes in patients treated with radiosurgery for brain metastases from non-small cell lung cancer. We developed models integrating pre-treatment magnetic resonance imaging (MRI)-derived radiomic features and clinical data. MATERIALS AND METHODS: Pre-radiotherapy gadolinium enhanced axial T1-weighted MRI scans were used. MRI images were re-sampled, intensity-shifted, and histogram-matched before radiomic extraction by means of two different platforms (PyRadiomics and SOPHiA Radiomics). We adopted LASSO Cox regression models for multivariable analyses by creating radiomic, clinical, and combined models using three survival clinical endpoints (local control, distant progression, and overall survival). The statistical analysis was repeated 50 times with different random seeds and the median concordance index was used as performance metric of the models. RESULTS: We analysed 276 metastases from 148 patients. The use of the two platforms resulted in differences in both the quality and the number of extractable features. That led to mismatches in terms of end-to-end performance, statistical significance of radiomic scores, and clinical covariates found significant in combined models. CONCLUSION: This study shed new light on how extracting radiomic features from the same images using two different platforms could yield several discrepancies. That may lead to acute consequences on drawing conclusions, comparing results across the literature, and translating radiomics into clinical practice.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/etiology , Radiosurgery/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Magnetic Resonance Imaging/methods , Retrospective Studies
6.
Insights Imaging ; 13(1): 137, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35976491

ABSTRACT

OBJECTIVE: Deploying an automatic segmentation model in practice should require rigorous quality assurance (QA) and continuous monitoring of the model's use and performance, particularly in high-stakes scenarios such as healthcare. Currently, however, tools to assist with QA for such models are not available to AI researchers. In this work, we build a deep learning model that estimates the quality of automatically generated contours. METHODS: The model was trained to predict the segmentation quality by outputting an estimate of the Dice similarity coefficient given an image contour pair as input. Our dataset contained 60 axial T2-weighted MRI images of prostates with ground truth segmentations along with 80 automatically generated segmentation masks. The model we used was a 3D version of the EfficientDet architecture with a custom regression head. For validation, we used a fivefold cross-validation. To counteract the limitation of the small dataset, we used an extensive data augmentation scheme capable of producing virtually infinite training samples from a single ground truth label mask. In addition, we compared the results against a baseline model that only uses clinical variables for its predictions. RESULTS: Our model achieved a mean absolute error of 0.020 ± 0.026 (2.2% mean percentage error) in estimating the Dice score, with a rank correlation of 0.42. Furthermore, the model managed to correctly identify incorrect segmentations (defined in terms of acceptable/unacceptable) 99.6% of the time. CONCLUSION: We believe that the trained model can be used alongside automatic segmentation tools to ensure quality and thus allow intervention to prevent undesired segmentation behavior.

7.
Radiother Oncol ; 168: 113-120, 2022 03.
Article in English | MEDLINE | ID: mdl-35033602

ABSTRACT

AIM: To quantify the dosimetric impact of contouring variability of axillary lymph nodes (L2, L3, L4) in breast cancer (BC) locoregional radiotherapy (RT). MATERIALS AND METHODS: 18 RT centres were asked to plan a locoregional treatment on their own planning target volume (single centre, SC-PTV) which was created by applying their institutional margins to the clinical target volume of the axillary nodes of three BC patients (P1, P2, P3) previously delineated (SC-CTV). The gold standard CTVs (GS-CTVs) of P1, P2 and P3 were developed by BC experts' consensus and validated with STAPLE algorithm. For each participating centre, the GS-PTV of each patient was created by applying the same margins as those used for the SC-CTV to SC-PTV expansion and replaced the SC-PTV in the treatment plan. Datasets were imported into MIM v6.1.7 [MIM Software Inc.], where dose-volume histograms (DVHs) were extracted and differences were analysed. RESULTS: 17/18 centres used intensity-modulated RT (IMRT). The CTV to PTV margins ranged from 0 to 10 mm (median 5 mm). No correlation was observed between GS-CTV coverage by 95% isodose and GS-PTV margins width. Doses delivered to 98% (D98) and 95% (D95) of GS-CTVs were significantly lower than those delivered to the SC-CTVs. No significant difference between SC-CTV and GS-CTV was observed in maximum dose (D2), always under 110%. Mean dose ≥99% of the SC-CTVs and GS-CTVs was satisfied in 84% and 50%, respectively. In less than one half of plans, GS-CTV V95% was above 90%. Breaking down the GS-CTV into the three nodal levels (L2, L3 and L4), L4 had the lowest probability to be covered by the 95% isodose. CONCLUSIONS: Overall, GS-CTV resulted worse coverage, especially for L4. IMRT was largely used and CTV-to-PTV margins did not compensate for contouring issues. The results highlighted the need for delineation training and standardization.


Subject(s)
Breast Neoplasms , Radiotherapy, Intensity-Modulated , Breast Neoplasms/radiotherapy , Female , Humans , Lymph Nodes , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
8.
Transl Lung Cancer Res ; 11(12): 2452-2463, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36636424

ABSTRACT

Background: No evidence supports the choice of specific imaging filtering methodologies in radiomics. As the volume of the primary tumor is a well-recognized prognosticator, our purpose is to assess how filtering may impact the feature/volume dependency in computed tomography (CT) images of non-small cell lung cancer (NSCLC), and if such impact translates into differences in the performance of survival modeling. The role of lesion volume in model performances was also considered and discussed. Methods: Four-hundred seventeen CT images NSCLC patients were retrieved from the NSCLC-Radiomics public repository. Pre-processing and features extraction were implemented using Pyradiomics v3.0.1. Features showing high correlation with volume across original and filtered images were excluded. Cox proportional hazards (PH) with least absolute shrinkage and selection operator (LASSO) regularization and CatBoost models were built with and without volume, and their concordance (C-) indices were compared using Wilcoxon signed-ranked test. The Mann Whitney U test was used to assess model performances after stratification into two groups based on low- and high-volume lesions. Results: Radiomic models significantly outperformed models built on only clinical variables and volume. However, the exclusion/inclusion of volume did not generally alter the performances of radiomic models. Overall, performances were not substantially affected by the choice of either imaging filter (overall C-index 0.539-0.590 for Cox PH and 0.589-0.612 for CatBoost). The separation of patients with high-volume lesions resulted in significantly better performances in 2/10 and 7/10 cases for Cox PH and CatBoost models, respectively. Both low- and high-volume models performed significantly better with the inclusion of radiomic features (P<0.0001), but the improvement was largest in the high-volume group (+10.2% against +8.7% improvement for CatBoost models and +10.0% against +5.4% in Cox PH models). Conclusions: Radiomic features complement well-known prognostic factors such as volume, but their volume-dependency is high and should be managed with vigilance. The informative content of radiomic features may be diminished in small lesion volumes, which could limit the applicability of radiomics in early-stage NSCLC, where tumors tend to be small. Our results also suggest an advantage of CatBoost models over the Cox PH models.

9.
Front Oncol ; 11: 772663, 2021.
Article in English | MEDLINE | ID: mdl-34869010

ABSTRACT

BACKGROUND AND PURPOSE: Machine learning (ML) is emerging as a feasible approach to optimize patients' care path in Radiation Oncology. Applications include autosegmentation, treatment planning optimization, and prediction of oncological and toxicity outcomes. The purpose of this clinically oriented systematic review is to illustrate the potential and limitations of the most commonly used ML models in solving everyday clinical issues in head and neck cancer (HNC) radiotherapy (RT). MATERIALS AND METHODS: Electronic databases were screened up to May 2021. Studies dealing with ML and radiomics were considered eligible. The quality of the included studies was rated by an adapted version of the qualitative checklist originally developed by Luo et al. All statistical analyses were performed using R version 3.6.1. RESULTS: Forty-eight studies (21 on autosegmentation, four on treatment planning, 12 on oncological outcome prediction, 10 on toxicity prediction, and one on determinants of postoperative RT) were included in the analysis. The most common imaging modality was computed tomography (CT) (40%) followed by magnetic resonance (MR) (10%). Quantitative image features were considered in nine studies (19%). No significant differences were identified in global and methodological scores when works were stratified per their task (i.e., autosegmentation). DISCUSSION AND CONCLUSION: The range of possible applications of ML in the field of HN Radiation Oncology is wide, albeit this area of research is relatively young. Overall, if not safe yet, ML is most probably a bet worth making.

10.
Eur Radiol ; 31(2): 716-728, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32852590

ABSTRACT

OBJECTIVES: Radiomic involves testing the associations of a large number of quantitative imaging features with clinical characteristics. Our aim was to extract a radiomic signature from axial T2-weighted (T2-W) magnetic resonance imaging (MRI) of the whole prostate able to predict oncological and radiological scores in prostate cancer (PCa). METHODS: This study included 65 patients with localized PCa treated with radiotherapy (RT) between 2014 and 2018. For each patient, the T2-W MRI images were normalized with the histogram intensity scale standardization method. Features were extracted with the IBEX software. The association of each radiomic feature with risk class, T-stage, Gleason score (GS), extracapsular extension (ECE) score, and Prostate Imaging Reporting and Data System (PI-RADS v2) score was assessed by univariate and multivariate analysis. RESULTS: Forty-nine out of 65 patients were eligible. Among the 1702 features extracted, 3 to 6 features with the highest predictive power were selected for each outcome. This analysis showed that texture features were the most predictive for GS, PI-RADS v2 score, and risk class; intensity features were highly associated with T-stage, ECE score, and risk class, with areas under the receiver operating characteristic curve (ROC AUC) ranging from 0.74 to 0.94. CONCLUSIONS: MRI-based radiomics is a promising tool for prediction of PCa characteristics. Although a significant association was found between the selected features and all the mentioned clinical/radiological scores, further validations on larger cohorts are needed before these findings can be applied in the clinical practice. KEY POINTS: • A radiomic model was used to classify PCa aggressiveness. • Radiomic analysis was performed on T2-W magnetic resonance images of the whole prostate gland. • The most predictive features belong to the texture (57%) and intensity (43%) domains.


Subject(s)
Prostatic Neoplasms , Humans , Magnetic Resonance Imaging , Male , Prospective Studies , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...