Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Physiol ; 15: 1296537, 2024.
Article in English | MEDLINE | ID: mdl-39135706

ABSTRACT

Introduction: Elite breath-hold divers (BHD) possess several oxygen conserving adaptations to endure long dives similar to diving mammals. During dives, Bottlenose Dolphins may increase the alveolar ventilation (VA) to perfusion (Q) ratio to increase alveolar oxygen delivery. We hypothesized that BHD possess similar adaptive mechanisms during apnea. Methods and results: Pulmonary blood volume (PBV) was determined by echocardiography, 15O-H2O PET/CT, and cardiac MRi, (n = 6) during and after maximum apneas. Pulmonary function was determined by body box spirometry and compared to matched controls. After 2 min of apnea, the PBV determined by echocardiography and 15O-H2O-PET/CT decreased by 26% and 41%, respectively. After 4 min of apnea, the PBV assessed by echocardiography and cardiac MRi decreased by 48% and 67%, respectively (n = 6). Fractional saturation (F)O2Hb determined by arterial blood-gas-analyses collected after warm-up and a 5-minute pool-apnea (n = 9) decreased by 43%. Compared to matched controls (n = 8), spirometry revealed a higher total and alveolar-lung-capacity in BHD (n = 9), but a lower diffusion-constant. Conclusion: Our results contrast with previous studies, that demonstrated similar lung gas transfer in BHD and matched controls. We conclude that elite BHD 1) have a lower diffusion constant than matched controls, and 2) gradually decrease PBV during apnea and in turn increase VA/Q to increase alveolar oxygen delivery during maximum apnea. We suggest that BHD possess pulmonary adaptations similar to diving mammals to tolerate decreasing tissue oxygenation. New and noteworthy: This manuscript addresses novel knowledge on tolerance to hypoxia during diving, which is shared by elite breath-hold divers and adult diving mammals: Our study indicates that elite breath-hold divers gradually decrease pulmonary blood volume and in turn increase VA/Q, to increase alveolar oxygen delivery during maximum apnea to tolerate decreasing oxygen levels similar to the Bottlenose Dolphin.

2.
Front Physiol ; 12: 712573, 2021.
Article in English | MEDLINE | ID: mdl-34925050

ABSTRACT

Introduction: The cardiac electrical conduction system is very sensitive to hypoglycemia and hypoxia, and the consequence may be brady-arrythmias. Weddell seals endure brady-arrythmias during their dives when desaturating to 3.2 kPa and elite breath-hold-divers (BHD), who share metabolic and cardiovascular adaptions including bradycardia with diving mammals, endure similar desaturation during maximum apnea. We hypothesized that hypoxia causes brady-arrythmias during maximum apnea in elite BHD. Hence, this study aimed to define the arterial blood glucose (Glu), peripheral saturation (SAT), heart rhythm (HR), and mean arterial blood pressure (MAP) of elite BHD during maximum apneas. Methods: HR was monitored with Direct-Current-Pads/ECG-lead-II and MAP and Glu from a radial arterial-catheter in nine BHD performing an immersed and head-down maximal static pool apnea after three warm-up apneas. SAT was monitored with a sensor on the neck of the subjects. On a separate day, a 12-lead-ECG-monitored maximum static apnea was repeated dry (n = 6). Results: During pool apnea of maximum duration (385 ± 70 s), SAT decreased from 99.6 ± 0.5 to 58.5 ± 5.5% (∼PaO2 4.8 ± 1.5 kPa, P < 0.001), while Glu increased from 5.8 ± 0.2 to 6.2 ± 0.2 mmol/l (P = 0.009). MAP increased from 103 ± 4 to 155 ± 6 mm Hg (P < 0.005). HR decreased to 46 ± 10 from 86 ± 14 beats/minute (P < 0.001). HR and MAP were unchanged after 3-4 min of apnea. During dry apnea (378 ± 31 s), HR decreased from 55 ± 4 to 40 ± 3 beats/minute (P = 0.031). Atrioventricular dissociation and junctional rhythm were observed both during pool and dry apneas. Conclusion: Our findings contrast with previous studies concluding that Glu decreases during apnea diving. We conclude during maximum apnea in elite BHD that (1) the diving reflex is maximized after 3-4 min, (2) increasing Glu may indicate lactate metabolism in accordance with our previous results, and (3) extreme hypoxia rather than hypoglycemia causes brady-arrythmias in elite BHD similar to diving mammals.

4.
Sci Rep ; 11(1): 2545, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510292

ABSTRACT

Breath-hold divers (BHD) enduring apnea for more than 4 min are characterized by resistance to release of reactive oxygen species, reduced sensitivity to hypoxia, and low mitochondrial oxygen consumption in their skeletal muscles similar to northern elephant seals. The muscles and myocardium of harbor seals also exhibit metabolic adaptations including increased cardiac lactate-dehydrogenase-activity, exceeding their hypoxic limit. We hypothesized that the myocardium of BHD possesses similar adaptive mechanisms. During maximum apnea 15O-H2O-PET/CT (n = 6) revealed no myocardial perfusion deficits but increased myocardial blood flow (MBF). Cardiac MRI determined blood oxygen level dependence oxygenation (n = 8) after 4 min of apnea was unaltered compared to rest, whereas cine-MRI demonstrated increased left ventricular wall thickness (LVWT). Arterial blood gases were collected after warm-up and maximum apnea in a pool. At the end of the maximum pool apnea (5 min), arterial saturation decreased to 52%, and lactate decreased 20%. Our findings contrast with previous MR studies of BHD, that reported elevated cardiac troponins and decreased myocardial perfusion after 4 min of apnea. In conclusion, we demonstrated for the first time with 15O-H2O-PET/CT and MRI in elite BHD during maximum apnea, that MBF and LVWT increases while lactate decreases, indicating anaerobic/fat-based cardiac-metabolism similar to diving mammals.


Subject(s)
Adaptation, Physiological , Apnea/metabolism , Breath Holding , Diving , Hypoxia/metabolism , Myocardium/metabolism , Adult , Blood Gas Analysis , Blood Pressure , Female , Heart Rate , Hemodynamics , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Positron Emission Tomography Computed Tomography
SELECTION OF CITATIONS
SEARCH DETAIL