Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nat Immunol ; 25(2): 194-195, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38191856

Subject(s)
Longevity , Plasma Cells
2.
J Exp Med ; 220(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36515679

ABSTRACT

The longevity of plasma cells is dependent on their ability to access and reside in so-called niches that are predominantly located in the bone marrow. Here, by employing a traceable method to label recently generated plasma cells, we showed that homeostatic plasma cells in the bone marrow and spleen were continuously replenished by newly generated B220hiMHC-IIhi populations that progressively differentiated into B220loMHC-IIlo long-lived plasma cell (LLPC) populations. We also found that, in the bone marrow, germinal center (GC)-independent and GC-dependent plasma cells decayed similarly upon NP-CGG engagement, and both entered the B220loMHC-IIlo LLPC pool. Compared with NP+B220hiMHC-IIhi plasma cells, NP+B220loMHC-IIlo cells were more immobilized in the bone marrow niches and showed better survival potential. Thus, our results suggest that the adhesion status of bone marrow plasma cells is dynamically altered during their differentiation and is associated with provision of survival signals.


Subject(s)
Bone Marrow , Plasma Cells , Plasma Cells/metabolism , Cell Differentiation , Bone Marrow Cells , Germinal Center , Cell Survival
3.
Sci Immunol ; 7(76): eabk0957, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36206353

ABSTRACT

Regulatory T (Treg) cells suppress effective antitumor immunity in tumor-bearing hosts, thereby becoming promising targets in cancer immunotherapy. Despite the importance of Treg cells in tumor immunity, little is known about their differentiation process and epigenetic profiles in the tumor microenvironment (TME). Here, we showed that Treg cells in the TME of human lung cancers harbored a completely different open chromatin profile compared with CD8+ T cells, conventional CD4+ T cells in the TME, and peripheral Treg cells. The integrative sequencing analyses including ATAC, single-cell RNA, and single-cell ATAC sequencing revealed that BATF, IRF4, NF-κB, and NR4A were important transcription factors for Treg cell differentiation in the TME. In particular, BATF was identified as a key regulator, which leveraged Treg cell differentiation through epigenetically controlling activation-associated gene expression, resulting in the robustness of Treg cells in the TME. The single-cell sequencing approaches also revealed that tissue-resident and tumor-infiltrating Treg cells followed a common pathway for differentiation and activation in a BATF-dependent manner heading toward Treg cells with the most differentiated and activated phenotypes in tissues and tumors. BATF deficiency in Treg cells remarkably inhibited tumor growth, and high BATF expression was associated with poor prognosis in lung cancer, kidney cancer, and melanoma. These findings indicate one of the specific chromatin remodeling and differentiation programs of Treg cells in the TME, which can be applied in the development of Treg cell-targeted therapies.


Subject(s)
Melanoma , T-Lymphocytes, Regulatory , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes , Chromatin/metabolism , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , RNA , Tumor Microenvironment
4.
Sci Immunol ; 7(68): eabi4919, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35179948

ABSTRACT

The response of naive CD8+ T cells to their cognate antigen involves rapid and broad changes to gene expression that are coupled with extensive chromatin remodeling, but the mechanisms governing these changes are not fully understood. Here, we investigated how these changes depend on the basic leucine zipper ATF-like transcription factor Batf, which is essential for the early phases of the process. Through genome scale profiling, we characterized the role of Batf in chromatin organization at several levels, including the accessibility of key regulatory regions, the expression of their nearby genes, and the interactions that these regions form with each other and with key transcription factors. We identified a core network of transcription factors that cooperated with Batf, including Irf4, Runx3, and T-bet, as indicated by their colocalization with Batf and their binding in regions whose accessibility, interactions, and expression of nearby genes depend on Batf. We demonstrated the synergistic activity of this network by overexpressing the different combinations of these genes in fibroblasts. Batf and Irf4, but not Batf alone, were sufficient to increase accessibility and transcription of key loci, normally associated with T cell function. Addition of Runx3 and T-bet further contributed to fine-tuning of these changes and was essential for establishing chromatin loops characteristic of T cells. These data provide a resource for studying the epigenomic and transcriptomic landscape of effector differentiation of cytotoxic T cells and for investigating the interdependency between transcription factors and its effects on the epigenome and transcriptome of primary cells.


Subject(s)
Basic-Leucine Zipper Transcription Factors/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Core Binding Factor Alpha 3 Subunit/immunology , Interferon Regulatory Factors/immunology , T-Box Domain Proteins/immunology , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Core Binding Factor Alpha 3 Subunit/genetics , Epigenesis, Genetic/genetics , Female , Interferon Regulatory Factors/genetics , Mice , Mice, Knockout , Mice, Transgenic , T-Box Domain Proteins/genetics
5.
Immunol Rev ; 307(1): 43-52, 2022 05.
Article in English | MEDLINE | ID: mdl-34908172

ABSTRACT

Despite the existence of central tolerance mechanisms, including clonal deletion and receptor editing to eliminate self-reactive B cells, moderately self-reactive cells still survive in the periphery (about 20% of peripheral B cells). These cells normally exist in a functionally silenced state called anergy; thus, anergy has been thought to contribute to tolerance by active-silencing of potentially dangerous B cells. However, a positive rationale for the existence of these anergic B cells has recently been suggested by discoveries that broadly neutralizing antibodies for HIV and influenza virus possess poly- and/or auto-reactivity. Given the conundrum of generating inherent holes in the immune repertoire, retaining weakly self-reactive BCRs on anergic B cells could allow these antibodies to serve as an effective defense against pathogens, particularly in the case of pathogens that mimic forbidden self-epitopes to evade the host immune system. Thus, anergic B cells should be brought into a silenced or activated state, depending on their contexts. Here, we review recent progress in our understanding of how the anergic B cell state is controlled in B cell-intrinsic and B cell-extrinsic ways.


Subject(s)
B-Lymphocytes , Clonal Anergy , Epitopes , Humans , Immune Tolerance , Lymphocyte Count
6.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-34910106

ABSTRACT

The germinal center (GC) is a site where somatic hypermutation and clonal selection are coupled for antibody affinity maturation against infections. However, how GCs are formed and regulated is incompletely understood. Here, we identified an unexpected role of Tank-binding kinase-1 (TBK1) as a crucial B cell-intrinsic factor for GC formation. Using immunization and malaria infection models, we show that TBK1-deficient B cells failed to form GC despite normal Tfh cell differentiation, although some malaria-infected B cell-specific TBK1-deficient mice could survive by GC-independent mechanisms. Mechanistically, TBK1 phosphorylation elevates in B cells during GC differentiation and regulates the balance of IRF4/BCL6 expression by limiting CD40 and BCR activation through noncanonical NF-κB and AKTT308 signaling. In the absence of TBK1, CD40 and BCR signaling synergistically enhanced IRF4 expression in Pre-GC, leading to BCL6 suppression, and therefore failed to form GCs. As a result, memory B cells generated from TBK1-deficient B cells fail to confer sterile immunity upon reinfection, suggesting that TBK1 determines B cell fate to promote long-lasting humoral immunity.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Host-Pathogen Interactions , Infections/etiology , Protein Serine-Threonine Kinases/genetics , Animals , Biomarkers , CD40 Antigens/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunity, Humoral , Immunization , Mice , Protein Serine-Threonine Kinases/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
7.
Int Immunol ; 33(12): 797-801, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34536284

ABSTRACT

Plasma cells are terminally differentiated from activated B cells and are specialized for secreting antibodies, which are essential effector molecules in humoral immunity to neutralize invading pathogens. Upon challenge with T-cell-dependent antigens, plasma cells can be generated during the primary extrafollicular response, the germinal center (GC) response or the secondary memory response. Recent studies have revealed that plasma cell generation is regulated not only by several key transcription factors but also by epigenetic modifications. In addition, the differentiation of GC B cells toward a plasma cell fate is associated with affinity for antigens and is determined by the strength of contact with T follicular helper cells.


Subject(s)
Germinal Center/immunology , Plasma Cells/immunology , T-Lymphocytes/immunology , Animals , Humans
8.
J Exp Med ; 218(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33045065

ABSTRACT

A still unanswered question is what drives the small fraction of activated germinal center (GC) B cells to become long-lived quiescent memory B cells. We found here that a small population of GC-derived CD38intBcl6hi/intEfnb1+ cells with lower mTORC1 activity favored the memory B cell fate. Constitutively high mTORC1 activity led to defects in formation of the CD38intBcl6hi/intEfnb1+ cells; conversely, decreasing mTORC1 activity resulted in relative enrichment of this memory-prone population over the recycling-prone one. Furthermore, the CD38intBcl6hi/intEfnb1+ cells had higher levels of Bcl2 and surface BCR that, in turn, contributed to their survival and development. We also found that downregulation of Bcl6 resulted in increased expression of both Bcl2 and BCR. Given the positive correlation between the strength of T cell help and mTORC1 activity, our data suggest a model in which weak help from T cells together with provision of an increased survival signal are key for GC B cells to adopt a memory B cell fate.


Subject(s)
B-Lymphocytes/immunology , Cellular Reprogramming/immunology , Germinal Center/immunology , Immunologic Memory , Signal Transduction/immunology , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Cell Survival/genetics , Cell Survival/immunology , Cellular Reprogramming/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/immunology , Mice , Mice, Knockout , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/immunology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Signal Transduction/genetics , T-Lymphocytes, Helper-Inducer/immunology
10.
Nat Immunol ; 21(8): 950-961, 2020 08.
Article in English | MEDLINE | ID: mdl-32572241

ABSTRACT

A contribution of epigenetic modifications to B cell tolerance has been proposed but not directly tested. Here we report that deficiency of ten-eleven translocation (Tet) DNA demethylase family members Tet2 and Tet3 in B cells led to hyperactivation of B and T cells, autoantibody production and lupus-like disease in mice. Mechanistically, in the absence of Tet2 and Tet3, downregulation of CD86, which normally occurs following chronic exposure of self-reactive B cells to self-antigen, did not take place. The importance of dysregulated CD86 expression in Tet2- and Tet3-deficient B cells was further demonstrated by the restriction, albeit not complete, on aberrant T and B cell activation following anti-CD86 blockade. Tet2- and Tet3-deficient B cells had decreased accumulation of histone deacetylase 1 (HDAC1) and HDAC2 at the Cd86 locus. Thus, our findings suggest that Tet2- and Tet3-mediated chromatin modification participates in repression of CD86 on chronically stimulated self-reactive B cells, which contributes, at least in part, to preventing autoimmunity.


Subject(s)
Autoimmunity/immunology , B-Lymphocytes/immunology , B7-2 Antigen/immunology , DNA-Binding Proteins/immunology , Dioxygenases/immunology , Proto-Oncogene Proteins/immunology , Animals , Autoimmune Diseases/immunology , Epigenesis, Genetic/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic
11.
Int Immunol ; 32(10): 683-690, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32583857

ABSTRACT

Antibodies produced by plasma cells are critical for protection from infection. It has been demonstrated that global epigenetic modification, such as changes in DNA methylation, occurs during differentiation of plasma cells from B cells. However, the precise mechanisms by which DNA methylation controls plasma cell differentiation are not fully understood. We examined the effect of deficiency of DNA demethylases, Tet2 and Tet3, on B-cell activation and plasma cell differentiation, by generating conditional Tet2/3 double-KO (Tet dKO) B cells. We found that Tet dKO B cells failed to differentiate into plasma cells upon immunization with antigens. Tet dKO B cells proliferated normally and were capable of generating cells with IRF4int, but not with IRF4hi, the majority of which were CD138+ plasma cells. IRF4 overexpression rescued the defect of Tet dKO B cells in plasma cell differentiation, suggesting that Tet2/3-dependent high IRF4 expression is required for plasma cell differentiation. We identified CpG sites in the Irf4 locus that were demethylated specifically in plasma cells and in a Tet2/3-dependent manner. Our results suggest that Tet2/3-dependent demethylation of these CpG sites is dispensable for initial IRF4 expression but is essential for high IRF4 expression which is prerequisite for plasma cell differentiation.


Subject(s)
DNA-Directed DNA Polymerase/immunology , Interferon Regulatory Factors/genetics , Plasma Cells/immunology , Animals , Cell Differentiation/immunology , DNA-Directed DNA Polymerase/metabolism , Interferon Regulatory Factors/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic
12.
Eur J Immunol ; 49(9): 1433-1440, 2019 09.
Article in English | MEDLINE | ID: mdl-31087643

ABSTRACT

Adjuvants improve the potency of vaccines, but the modes of action (MOAs) of most adjuvants are largely unknown. TLR-dependent and -independent innate immune signaling through the adaptor molecule MyD88 has been shown to be pivotal to the effects of most adjuvants; however, MyD88's involvement in the TLR-independent MOAs of adjuvants is poorly understood. Here, using the T-dependent antigen NIPOVA and a unique particulate adjuvant called synthetic hemozoin (sHZ), we show that MyD88 is required for early GC formation and enhanced antibody class-switch recombination (CSR) in mice. Using cell-type-specific MyD88 KO mice, we found that IgG2c class switching, but not IgG1 class switching, was controlled by B cell-intrinsic MyD88 signaling. Notably, IFN-γ produced by various cells including T cells, NK cells, and dendritic cells was the primary cytokine for IgG2c CSR and B-cell intrinsic MyD88 is required for IFN-γ production. Moreover, IFN-γ receptor (IFNγR) deficiency abolished sHZ-induced IgG2c production, while recombinant IFN-γ administration successfully rescued IgG2c CSR impairment in mice lacking B-cell intrinsic MyD88. Together, our results show that B cell-intrinsic MyD88 signaling is involved in the MOA of certain particulate adjuvants and this may enhance our specific understanding of how adjuvants and vaccines work.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin Class Switching/immunology , Immunoglobulin G/immunology , Interferon-gamma/immunology , Myeloid Differentiation Factor 88/immunology , Signal Transduction/immunology , Adjuvants, Immunologic/pharmacology , Animals , Dendritic Cells/immunology , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes/immunology
13.
Immunol Rev ; 288(1): 64-74, 2019 03.
Article in English | MEDLINE | ID: mdl-30874351

ABSTRACT

Germinal centers (GCs) are formed in secondary lymphoid tissues upon immunization with T-dependent antigens. In GCs, somatic hypermutation generates B cells with increased antibody affinity and these high-affinity B cells preferentially differentiate into plasma cells, which home to bone marrow and confer long-lived humoral immunity. Recent studies have shed new light on the cellular and molecular basis for initiating the transition from a GC B cell to a plasma cell. Here, we review recent progress in our understanding of how plasma cell generation during the GC reaction is regulated for inducing effective long-term protective immunity and for preventing harmful autoimmunity.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Plasma Cells/immunology , Animals , Autoimmunity , Cell Differentiation , Humans , Immunity, Humoral , Immunologic Memory , Lymphocyte Activation
14.
Proc Natl Acad Sci U S A ; 115(33): 8418-8423, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30061415

ABSTRACT

The local environment is crucial for shaping the identities of tissue-resident macrophages (Mϕs). When hemorrhage occurs in damaged tissues, hemoglobin induces differentiation of anti-inflammatory Mϕs with reparative function. Mucosal bleeding is one of the pathological features of inflammatory bowel diseases. However, the heme-mediated mechanism modulating activation of intestinal innate immune cells remains poorly understood. Here, we show that heme regulates gut homeostasis through induction of Spi-C in intestinal CX3CR1high Mϕs. Intestinal CX3CR1high Mϕs highly expressed Spi-C in a heme-dependent manner, and myeloid lineage-specific Spic-deficient (Lyz2-cre; Spicflox/flox ) mice showed severe intestinal inflammation with an increased number of Th17 cells during dextran sodium sulfate-induced colitis. Spi-C down-regulated the expression of a subset of Toll-like receptor (TLR)-inducible genes in intestinal CX3CR1high Mϕs to prevent colitis. LPS-induced production of IL-6 and IL-1α, but not IL-10 and TNF-α, by large intestinal Mϕs from Lyz2-cre; Spicflox/flox mice was markedly enhanced. The interaction of Spi-C with IRF5 was linked to disruption of the IRF5-NF-κB p65 complex formation, thereby abrogating recruitment of IRF5 and NF-κB p65 to the Il6 and Il1a promoters. Collectively, these results demonstrate that heme-mediated Spi-C is a key molecule for the noninflammatory signature of intestinal Mϕs by suppressing the induction of a subset of TLR-inducible genes through binding to IRF5.


Subject(s)
Colitis/drug therapy , Heme/pharmacology , Intestines/immunology , Macrophages/immunology , Animals , CX3C Chemokine Receptor 1/physiology , Cytokines/biosynthesis , DNA-Binding Proteins/physiology , Dextran Sulfate/toxicity , Iron, Dietary/administration & dosage , Mice , Mice, Inbred C57BL , Toll-Like Receptors/physiology , Transcription Factor RelA/physiology
15.
Immunity ; 48(4): 702-715.e4, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29669250

ABSTRACT

Higher- or lower-affinity germinal center (GC) B cells are directed either to plasma cell or GC recycling, respectively; however, how commitment to the plasma cell fate takes place is unclear. We found that a population of light zone (LZ) GC cells, Bcl6loCD69hi expressing a transcription factor IRF4 and higher-affinity B cell receptors (BCRs) or Bcl6hiCD69hi with lower-affinity BCRs, favored the plasma cell or recycling GC cell fate, respectively. Mechanistically, CD40 acted as a dose-dependent regulator for Bcl6loCD69hi cell formation. Furthermore, we found that expression of intercellular adhesion molecule 1 (ICAM-1) and signaling lymphocytic activation molecule (SLAM) in Bcl6loCD69hi cells was higher than in Bcl6hiCD69hi cells, thereby affording more stable T follicular helper (Tfh)-GC B cell contacts. These data support a model whereby commitment to the plasma cell begins in the GC and suggest that stability of Tfh-GC B cell contacts is key for plasma cell-prone GC cell formation.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , B-Lymphocytes/cytology , CD40 Antigens/metabolism , Germinal Center/immunology , Lectins, C-Type/metabolism , Plasma Cells/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , T-Lymphocytes, Helper-Inducer/cytology , Animals , B-Lymphocytes/immunology , Cell Differentiation/immunology , Intercellular Adhesion Molecule-1/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Signaling Lymphocytic Activation Molecule Family/biosynthesis , T-Lymphocytes, Helper-Inducer/immunology
16.
J Exp Med ; 214(4): 1181-1198, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28351982

ABSTRACT

Germinal center (GC) B cells cycle between two states, the light zone (LZ) and the dark zone (DZ), and in the latter they proliferate and hypermutate their immunoglobulin genes. How this functional transition takes place is still controversial. In this study, we demonstrate that ablation of Foxo1 after GC development led to the loss of the DZ GC B cells and disruption of the GC architecture, which is consistent with recent studies. Mechanistically, even upon provision of adequate T cell help, Foxo1-deficient GC B cells showed less proliferative expansion than controls. Moreover, we found that the transcription factor BATF was transiently induced in LZ GC B cells in a Foxo1-dependent manner and that deletion of BATF similarly led to GC disruption. Thus, our results are consistent with a model where the switch from the LZ to the DZ is triggered after receipt of T cell help, and suggest that Foxo1-mediated BATF up-regulation is at least partly involved in this switch.


Subject(s)
B-Lymphocytes/immunology , Forkhead Box Protein O1/physiology , Germinal Center/immunology , Lymphocyte Activation , T-Lymphocytes/physiology , Animals , B-Lymphocytes/cytology , Cell Proliferation , Mice , Mice, Inbred C57BL
17.
Immunity ; 45(6): 1299-1310, 2016 12 20.
Article in English | MEDLINE | ID: mdl-28002730

ABSTRACT

Particulate pollution is thought to function as an adjuvant that can induce allergic responses. However, the exact cell types and immunological factors that initiate the lung-specific immune responses are unclear. We found that upon intratracheal instillation, particulates such as aluminum salts and silica killed alveolar macrophages (AMs), which then released interleukin-1α (IL-1α) and caused inducible bronchus-associated lymphoid tissue (iBALT) formation in the lung. IL-1α release continued for up to 2 weeks after particulate exposure, and type-2 allergic immune responses were induced by the inhalation of antigen during IL-1α release and iBALT formation, even long after particulate instillation. Recombinant IL-1α was sufficient to induce iBALTs, which coincided with subsequent immunoglobulin E responses, and IL-1-receptor-deficient mice failed to induce iBALT formation. Therefore, the AM-IL-1α-iBALT axis might be a therapeutic target for particulate-induced allergic inflammation.


Subject(s)
Bronchi/immunology , Interleukin-1alpha/immunology , Lymphoid Tissue/immunology , Macrophages, Alveolar/pathology , Particulate Matter/toxicity , Aluminum Compounds/toxicity , Animals , Female , Mice , Mice, Inbred C57BL , Silicon Dioxide/toxicity
18.
Nat Commun ; 7: 12596, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27581382

ABSTRACT

Although Bach2 has an important role in regulating the Th2-type immune response, the underlying molecular mechanisms remain unclear. We herein demonstrate that Bach2 associates with Batf and binds to the regulatory regions of the Th2 cytokine gene loci. The Bach2-Batf complex antagonizes the recruitment of the Batf-Irf4 complex to AP-1 motifs and suppresses Th2 cytokine production. Furthermore, we find that Bach2 regulates the Batf and Batf3 expressions via two distinct pathways. First, Bach2 suppresses the maintenance of the Batf and Batf3 expression through the inhibition of IL-4 production. Second, the Bach2-Batf complex directly binds to the Batf and Batf3 gene loci and reduces transcription by interfering with the Batf-Irf4 complex. These findings suggest that IL-4 and Batf form a positive feedback amplification loop to induce Th2 cell differentiation and the subsequent Th2-type immune response, and Bach2-Batf interactions are required to prevent an excessive Th2 response.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Interferon Regulatory Factors/genetics , Repressor Proteins/genetics , Th2 Cells/immunology , Animals , Cell Differentiation/immunology , Female , Gene Expression Regulation , Interferon Regulatory Factors/metabolism , Interleukin-4/biosynthesis , Interleukin-4/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Repressor Proteins/metabolism , STAT6 Transcription Factor/genetics , Transcription, Genetic/genetics
19.
Nat Commun ; 7: 11205, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27046227

ABSTRACT

Rheumatoid arthritis (RA)-associated IgG antibodies such as anti-citrullinated protein antibodies (ACPAs) have diverse glycosylation variants; however, key sugar chains modulating the arthritogenic activity of IgG remain to be clarified. Here, we show that reduced sialylation is a common feature of RA-associated IgG in humans and in mouse models of arthritis. Genetically blocking sialylation in activated B cells results in exacerbation of joint inflammation in a collagen-induced arthritis (CIA) model. On the other hand, artificial sialylation of anti-type II collagen antibodies, including ACPAs, not only attenuates arthritogenic activity, but also suppresses the development of CIA in the antibody-infused mice, whereas sialylation of other IgG does not prevent CIA. Thus, our data demonstrate that sialylation levels control the arthritogenicity of RA-associated IgG, presenting a potential target for antigen-specific immunotherapy.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Autoantibodies/immunology , Immunoglobulin G/immunology , Protein Processing, Post-Translational , Amino Acid Sequence , Animals , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Autoantibodies/chemistry , Autoantibodies/metabolism , Carbohydrate Sequence , Collagen Type II/immunology , Collagen Type II/metabolism , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Molecular Sequence Data , Sialic Acids/immunology , Sialic Acids/metabolism
20.
Biosci Biotechnol Biochem ; 80(1): 1-6, 2016.
Article in English | MEDLINE | ID: mdl-26120879

ABSTRACT

Most currently available vaccines rely on the induction of long-lasting protective humoral immune responses by memory B cells and plasma cells. Antibody responses against most antigens require interactions between antigen-specific B cells and CD4(+) T cells. Follicular helper T cells (TFH cells) are specialized subset of T cells that provide help to B cells and are essential for germinal center formation, affinity maturation, and the development of high-affinity antibodies. TFH-cell differentiation is a multistage process involving B-cell lymphoma 6 and other transcription factors, cytokines, and costimulation through inducible costimulator (ICOS) and several other molecules. This article reviews recent advances in our understanding of TFH cell biology, including their differentiation, transcriptional regulation, and function.


Subject(s)
Antibodies/genetics , B-Lymphocytes/immunology , DNA-Binding Proteins/immunology , Immunity, Humoral , Inducible T-Cell Co-Stimulator Protein/immunology , T-Lymphocytes, Helper-Inducer/immunology , Antigens/genetics , Antigens/immunology , B-Lymphocytes/cytology , Cell Communication/immunology , Cell Differentiation , Cytokines/genetics , Cytokines/immunology , DNA-Binding Proteins/genetics , Gene Expression Regulation/immunology , Germinal Center/cytology , Germinal Center/immunology , Humans , Inducible T-Cell Co-Stimulator Protein/genetics , Plasma Cells/cytology , Plasma Cells/immunology , Proto-Oncogene Proteins c-bcl-6 , Signal Transduction , T-Lymphocytes, Helper-Inducer/cytology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL