Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mod Pathol ; 36(10): 100241, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37343766

ABSTRACT

Phosphatase and tensin homolog (PTEN) loss is associated with adverse outcomes in prostate cancer and can be measured via immunohistochemistry. The purpose of the study was to establish the clinical application of an in-house developed artificial intelligence (AI) image analysis workflow for automated detection of PTEN loss on digital images for identifying patients at risk of early recurrence and metastasis. Postsurgical tissue microarray sections from the Canary Foundation (n = 1264) stained with anti-PTEN antibody were evaluated independently by pathologist conventional visual scoring (cPTEN) and an automated AI-based image analysis pipeline (AI-PTEN). The relationship of PTEN evaluation methods with cancer recurrence and metastasis was analyzed using multivariable Cox proportional hazard and decision curve models. Both cPTEN scoring by the pathologist and quantification of PTEN loss by AI (high-risk AI-qPTEN) were significantly associated with shorter metastasis-free survival (MFS) in univariable analysis (cPTEN hazard ratio [HR], 1.54; CI, 1.07-2.21; P = .019; AI-qPTEN HR, 2.55; CI, 1.83-3.56; P < .001). In multivariable analyses, AI-qPTEN showed a statistically significant association with shorter MFS (HR, 2.17; CI, 1.49-3.17; P < .001) and recurrence-free survival (HR, 1.36; CI, 1.06-1.75; P = .016) when adjusting for relevant postsurgical clinical nomogram (Cancer of the Prostate Risk Assessment [CAPRA] postsurgical score [CAPRA-S]), whereas cPTEN does not show a statistically significant association (HR, 1.33; CI, 0.89-2; P = .2 and HR, 1.26; CI, 0.99-1.62; P = .063, respectively) when adjusting for CAPRA-S risk stratification. More importantly, AI-qPTEN was associated with shorter MFS in patients with favorable pathological stage and negative surgical margins (HR, 2.72; CI, 1.46-5.06; P = .002). Workflow also demonstrated enhanced clinical utility in decision curve analysis, more accurately identifying men who might benefit from adjuvant therapy postsurgery. This study demonstrates the clinical value of an affordable and fully automated AI-powered PTEN assessment for evaluating the risk of developing metastasis or disease recurrence after radical prostatectomy. Adding the AI-qPTEN assessment workflow to clinical variables may affect postoperative surveillance or management options, particularly in low-risk patients.

2.
Mod Pathol ; 34(2): 478-489, 2021 02.
Article in English | MEDLINE | ID: mdl-32884130

ABSTRACT

Phosphatase and tensin homolog (PTEN) loss is associated with adverse outcomes in prostate cancer and has clinical potential as a prognostic biomarker. The objective of this work was to develop an artificial intelligence (AI) system for automated detection and localization of PTEN loss on immunohistochemically (IHC) stained sections. PTEN loss was assessed using IHC in two prostate tissue microarrays (TMA) (internal cohort, n = 272 and external cohort, n = 129 patients). TMA cores were visually scored for PTEN loss by pathologists and, if present, spatially annotated. Cores from each patient within the internal TMA cohort were split into 90% cross-validation (N = 2048) and 10% hold-out testing (N = 224) sets. ResNet-101 architecture was used to train core-based classification using a multi-resolution ensemble approach (×5, ×10, and ×20). For spatial annotations, single resolution pixel-based classification was trained from patches extracted at ×20 resolution, interpolated to ×40 resolution, and applied in a sliding-window fashion. A final AI-based prediction model was created from combining multi-resolution and pixel-based models. Performance was evaluated in 428 cores of external cohort. From both cohorts, a total of 2700 cores were studied, with a frequency of PTEN loss of 14.5% in internal (180/1239) and external 13.5% (43/319) cancer cores. The final AI-based prediction of PTEN status demonstrated 98.1% accuracy (95.0% sensitivity, 98.4% specificity; median dice score = 0.811) in internal cohort cross-validation set and 99.1% accuracy (100% sensitivity, 99.0% specificity; median dice score = 0.804) in internal cohort test set. Overall core-based classification in the external cohort was significantly improved in the external cohort (area under the curve = 0.964, 90.6% sensitivity, 95.7% specificity) when further trained (fine-tuned) using 15% of cohort data (19/124 patients). These results demonstrate a robust and fully automated method for detection and localization of PTEN loss in prostate cancer tissue samples. AI-based algorithms have potential to streamline sample assessment in research and clinical laboratories.


Subject(s)
Biomarkers, Tumor/analysis , Deep Learning , PTEN Phosphohydrolase/analysis , Prostatic Neoplasms , Algorithms , Cohort Studies , High-Throughput Nucleotide Sequencing/methods , Humans , Image Processing, Computer-Assisted/methods , Male , Tissue Array Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...