Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sleep Health ; 10(1S): S144-S148, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37730474

ABSTRACT

OBJECTIVES: This study assessed whether there was a time-of-day effect on nausea reports in participants during studies employing circadian protocols. METHODS: Visual-analog-scales of nausea ratings were recorded from 34 participants (18-70years; 18 women) during forced desynchrony studies, where meals were scheduled at different circadian phases. Subjective nausea reports from a further 81 participants (18-35years; 36 women) were recorded during constant routine studies, where they ate identical isocaloric hourly snacks for 36-40 hours. RESULTS: Feelings of nausea varied by circadian phase in the forced desynchrony studies, peaking during the biological night. Nausea during the constant routine was reported by 27% of participants, commencing 2.9 ± 5.2 hours after the midpoint of usual sleep timing, but was never reported to start in the evening (4-9 PM). CONCLUSIONS: Nausea occurred more often during the biological night and early morning hours. This timing is relevant to overnight and early morning shift workers and suggests that a strategy to counteract that is to pay careful attention to meal timing.

2.
Endocr Connect ; 12(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37855336

ABSTRACT

Obesity is a major cause of type 2 diabetes. Transition from obesity to type 2 diabetes manifests in the dysregulation of hormones controlling glucose homeostasis and inflammation. As metabolism is a dynamic process that changes across 24 h, we assessed diurnal rhythmicity in a panel of 10 diabetes-related hormones. Plasma hormones were analysed every 2 h over 24 h in a controlled laboratory study with hourly isocaloric drinks during wake. To separate effects of body mass from type 2 diabetes, we recruited three groups of middle-aged men: an overweight (OW) group with type 2 diabetes and two control groups (lean and OW). Average daily concentrations of glucose, triacylglycerol and all the hormones except visfatin were significantly higher in the OW group compared to the lean group (P < 0.001). In type 2 diabetes, glucose, insulin, C-peptide, glucose-dependent insulinotropic peptide and glucagon-like peptide-1 increased further (P < 0.05), whereas triacylglycerol, ghrelin and plasminogen activator inhibitor-1 concentrations were significantly lower compared to the OW group (P < 0.001). Insulin, C-peptide, glucose-dependent insulinotropic peptide and leptin exhibited significant diurnal rhythms in all study groups (P < 0.05). Other hormones were only rhythmic in 1 or 2 groups. In every group, hormones associated with glucose regulation (insulin, C-peptide, glucose-dependent insulinotropic peptide, ghrelin and plasminogen activator inhibitor-1), triacylglycerol and glucose peaked in the afternoon, whereas glucagon and hormones associated with appetite and inflammation peaked at night. Thus being OW with or without type 2 diabetes significantly affected hormone concentrations but did not affect the timing of the hormonal rhythms.

3.
Curr Biol ; 33(7): 1321-1326.e3, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36822203

ABSTRACT

Circadian rhythms, metabolism, and nutrition are closely linked.1 Timing of a three-meal daily feeding pattern synchronizes some human circadian rhythms.2 Despite animal data showing anticipation of food availability, linked to a food-entrainable oscillator,3 it is unknown whether human physiology predicts mealtimes and restricted food availability. In a controlled laboratory protocol, we tested the hypothesis that the human circadian system anticipates large meals. Twenty-four male participants undertook an 8-day laboratory study, with strict sleep-wake schedules, light-dark schedules, and food intake. For 6 days, participants consumed either hourly small meals throughout the waking period or two large daily meals (7.5 and 14.5 h after wake-up). All participants then undertook a 37-h constant routine. Interstitial glucose was measured every 15 min throughout the protocol. Hunger was assessed hourly during waking periods. Saliva melatonin was measured in the constant routine. During the 6-day feeding pattern, both groups exhibited increasing glucose concentration early each morning. In the small meal group, glucose concentrations continued to increase across the day. However, in the large meal group, glucose concentrations decreased from 2 h after waking until the first meal. Average 24-h glucose concentration did not differ between groups. In the constant routine, there was no difference in melatonin onset between groups, but antiphasic glucose rhythms were observed, with low glucose at the time of previous meals in the large meal group. Moreover, in the large meal group, constant routine hunger scores increased before the predicted meal times. These data support the existence of human food anticipation.


Subject(s)
Hunger , Melatonin , Animals , Humans , Male , Hunger/physiology , Glucose , Feeding Behavior/physiology , Meals
4.
Front Neurosci ; 16: 848602, 2022.
Article in English | MEDLINE | ID: mdl-35495039

ABSTRACT

The aims of the present study were to obtain sleep quality and sleep timing information in a group of university students and to evaluate the effects of a circadian hygiene education initiative. All students of the University of Padova (approximately 64,000) were contacted by e-mail (major campaigns in October 2019 and October 2020) and directed to an ad hoc website for collection of demographics and sleep quality/timing information. Participants (n = 5,740) received one of two sets of circadian hygiene advice ("A regular life" or "Bright days and dark nights"). Every month, they were then asked how easy it had been to comply and provided with the advice again. At any even month from joining, they completed the sleep quality/timing questionnaires again. Information on academic performance was obtained post hoc, together with representative samples of lecture (n = 5,972) and examination (n = 1,800) timings, plus lecture attendances (n = 25,302). Fifty-two percent of students had poor sleep quality, and 82% showed signs of social jetlag. Those who joined in October 2020, after several months of lockdown and distance learning, had better sleep quality, less social jetlag, and later sleep habits. Over approximately a year, the "Bright days and dark nights" advice resulted in significantly earlier get-up times compared with the "A regular life" advice. Similarly, it also resulted in a trend toward earlier midsleep (i.e., the midpoint, expressed as clock time, between sleep onset and sleep offset) and toward a decrease in the latency between wake-up and get-up time, with no impact on sleep duration. Significant changes in most sleep quality and sleep timing variables (i.e., fewer night awakenings, less social jetlag, and delayed sleep timing during lock-down) were observed in both advice groups over approximately a year, mostly in association with pandemic-related events characterizing 2020. Early chronotype students had better academic performances compared with their later chronotype counterparts. In a multivariate model, sleep quality, chronotype and study subject (science and technology, health and medical, or social and humanities) were independent predictors of academic performance. Taken together, these results underlie the importance of designing circadian-friendly university timetables.

5.
Chronobiol Int ; 37(9-10): 1404-1411, 2020.
Article in English | MEDLINE | ID: mdl-32893681

ABSTRACT

Circadian misalignment remains a distinct challenge for night shift workers. Variability in individual sleep-wake/light-dark patterns might contribute to individual differences in circadian alignment in night shift workers. In this simulation study, we compared the predicted phase shift from a mathematical model of the effect of light on the human circadian pacemaker to the observed melatonin phase shift among individuals who completed one of four interventions during simulated night shift work. Two inputs to the model were used to simulate circadian phase: sleep-wake/light-dark patterns measured from a wrist monitor (Simulation 1) and sleep-wake/light-dark patterns measured from a wrist monitor enhanced by known light levels measured at the level of the eye during simulated night shifts (Simulation 2). The estimated phase shift from the model was within 2 hours of the observed phase shift in ~80% of night shift workers for both simulations; none of the model-predicted phase shifts was more than ~3 hours from the observed phase shift. Overall, the root-mean-square error between observed and predicted phase shifts was better for Simulation 1. The light input from the wrist monitor informed by actual light level measured at the eye performed better in the sub-group exposed to bright light during their night shifts. The findings from this simulation study suggest that using a mathematical model combined with sleep-wake and light exposure data from a wrist monitor can facilitate the design of shift work schedules to enhance circadian alignment, which is expected to improve sleep, alertness, and performance.


Subject(s)
Individuality , Melatonin , Adaptation, Physiological , Aged , Circadian Rhythm , Humans , Models, Theoretical , Sleep , Work Schedule Tolerance
6.
Chronobiol Int ; 37(9-10): 1335-1343, 2020.
Article in English | MEDLINE | ID: mdl-32777972

ABSTRACT

Studying communities with different levels of urbanization may further the understanding of risk factors underlying metabolic diseases. The present study is unique by comprising detailed assessment of sleep and activity, biological rhythms, and metabolic factors of men from the same geographical location and place of birth that reside in different, rural vs. town, stages of urbanization. Sleep patterns, activity, and metabolic indicators in two groups (rural, n = 22 and town/urban, n = 20) of men residing in an Amazonian community (Xapuri, Acre, Brazil) were compared. Sociodemographic, anthropometric, and metabolic variables - fasting glucose, insulin resistance, triglycerides, total HDL cholesterol, LDL cholesterol, and VLDL cholesterol - were assessed. Sleep patterns, light exposure, and physical activity levels were additionally assessed by actigraphy, plus daily activities were recorded in diaries for 10 days. Town/urban dwellers were found to have significantly higher body weight, fasting glucose, insulin levels, and insulin resistance than rural dwellers, whereas triglycerides levels were similar. Town/Urban dwellers had shorter sleep duration (p < .01) and later sleep onset and offset times (p = .01). Our findings show an association between stage of urbanization and presence of risk factors for metabolic disorders, such as overweight, insulin resistance, increased glucose levels, short sleep duration, and less natural light exposure during work times.


Subject(s)
Circadian Rhythm , Urbanization , Body Mass Index , Brazil , Humans , Male , Overweight , Risk Factors , Sleep , Triglycerides
7.
Nutrients ; 12(2)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023914

ABSTRACT

Urbanization has contributed to extended wakefulness, which may in turn be associated with eating over a longer period. Here, we present a field study conducted in four groups with different work hours and places of living in order to investigate eating behavior (duration, content, and timing). Anthropometric measures were taken from the participants (rural (n = 22); town (n = 19); city-day workers (n = 11); city-night workers (n = 14)). In addition, a sociodemographic questionnaire was self-answered and 24-h food recalls were applied for three days. The 24-h food recalls revealed that fat intake varied according to the groups, with the highest consumption by the city-day workers. By contrast, city-day workers had the lowest intake of carbohydrate, whereas the rural group had the highest. In general, all groups had some degree of inadequacy in food consumption. Eating duration was negatively correlated with total energy intake, fat, and protein consumption in the rural and town groups. There was a positive correlation between body mass index and eating duration in both city groups. The rural group had the earliest start time of eating, and this was associated with a lower body mass index. This study suggested that food content and timing, as well as eating duration, differed according to place of living, which in turn may be linked to lifestyle.


Subject(s)
Diet/statistics & numerical data , Personnel Staffing and Scheduling/statistics & numerical data , Rural Population/statistics & numerical data , Urban Population/statistics & numerical data , Urbanization , Adult , Body Mass Index , Brazil , Cross-Sectional Studies , Diet Surveys , Energy Intake , Feeding Behavior , Female , Humans , Male , Surveys and Questionnaires , Time Factors
8.
Front Neurol ; 9: 1019, 2018.
Article in English | MEDLINE | ID: mdl-30555403

ABSTRACT

The pupillary light reflex (PLR) is a neurological reflex driven by rods, cones, and melanopsin-containing retinal ganglion cells. Our aim was to achieve a more precise picture of the effects of 5-min duration monochromatic light stimuli, alone or in combination, on the human PLR, to determine its spectral sensitivity and to assess the importance of photon flux. Using pupillometry, the PLR was assessed in 13 participants (6 women) aged 27.2 ± 5.41 years (mean ± SD) during 5-min light stimuli of purple (437 nm), blue (479 nm), red (627 nm), and combinations of red+purple or red+blue light. In addition, nine 5-min, photon-matched light stimuli, ranging in 10 nm increments peaking between 420 and 500 nm were tested in 15 participants (8 women) aged 25.7 ± 8.90 years. Maximum pupil constriction, time to achieve this, constriction velocity, area under the curve (AUC) at short (0-60 s), and longer duration (240-300 s) light exposures, and 6-s post-illumination pupillary response (6-s PIPR) were assessed. Photoreceptor activation was estimated by mathematical modeling. The velocity of constriction was significantly faster with blue monochromatic light than with red or purple light. Within the blue light spectrum (between 420 and 500 nm), the velocity of constriction was significantly faster with the 480 nm light stimulus, while the slowest pupil constriction was observed with 430 nm light. Maximum pupil constriction was achieved with 470 nm light, and the greatest AUC0-60 and AUC240-300 was observed with 490 and 460 nm light, respectively. The 6-s PIPR was maximum after 490 nm light stimulus. Both the transient (AUC0-60) and sustained (AUC240-300) response was significantly correlated with melanopic activation. Higher photon fluxes for both purple and blue light produced greater amplitude sustained pupillary constriction. The findings confirm human PLR dependence on wavelength, monochromatic or bichromatic light and photon flux under 5-min duration light stimuli. Since the most rapid and high amplitude PLR occurred within the 460-490 nm light range (alone or combined), our results suggest that color discrimination should be studied under total or partial substitution of this blue light range (460-490 nm) by shorter wavelengths (~440 nm). Thus for nocturnal lighting, replacement of blue light with purple light might be a plausible solution to preserve color discrimination while minimizing melanopic activation.

9.
Curr Biol ; 28(22): 3685-3690.e3, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30416064

ABSTRACT

There is emerging evidence that circadian misalignment may alter energy expenditure, leading to obesity risk among those with irregular schedules [1-5]. It has been reported that energy expenditure is affected by the timing of sleep, exercise, and meals [6]. However, it is unclear whether the circadian system also modulates energy expenditure, independent of behavioral state and food intake. Here, we used a forced desynchrony protocol to examine whether fasted resting energy expenditure (REE) varies with circadian phase in seven participants. This protocol allowed us to uncouple sleep-wake and activity-related effects from the endogenous circadian rhythm, demonstrating that REE varies by circadian phase. REE is lowest at circadian phase ∼0°, corresponding to the endogenous core body temperature (CBT) nadir in the late biological night, and highest at circadian phase ∼180° in the biological afternoon and evening. Furthermore, we found that respiratory quotient (RQ), reflecting macronutrient utilization, also varies by circadian phase. RQ is lowest at circadian phase ∼240° and highest at circadian phase ∼60°, which corresponds to biological morning. This is the first characterization of a circadian profile in fasted resting energy expenditure and fasted respiratory quotient (with rhythmic profiles in both carbohydrate and lipid oxidation), decoupled from effects of activity, sleep-wake cycle, and diet in humans. The rhythm in energy expenditure and macronutrient metabolism may contribute to greater weight gain in shift workers and others with irregular schedules.


Subject(s)
Circadian Rhythm , Energy Metabolism , Sleep , Wakefulness , Adult , Aged , Diet , Female , Humans , Male , Middle Aged , Rest/physiology
10.
FASEB J ; 31(12): 5557-5567, 2017 12.
Article in English | MEDLINE | ID: mdl-28821636

ABSTRACT

Metabolic profiling of individuals with type 2 diabetes mellitus (T2DM) has previously been limited to single-time-point samples, ignoring time-of-day variation. Here, we tested our hypothesis that body mass and T2DM affect daily rhythmicity and concentrations of circulating metabolites across a 24-h day in 3 age-matched, male groups-lean, overweight/obese (OW/OB), and OW/OB with T2DM-in controlled laboratory conditions, which were not confounded by large meals. By using targeted liquid chromatography/mass spectrometry metabolomics, we quantified 130 plasma metabolites every 2 h over 24 h, and we show that average metabolite concentrations were significantly altered by increased body mass (90 of 130) and T2DM (56 of 130). Thirty-eight percent of metabolites exhibited daily rhythms in at least 1 study group, and where a metabolite was rhythmic in >1 group, its peak time was comparable. The optimal time of day was assessed to provide discriminating biomarkers. This differed between metabolite classes and study groups-for example, phospholipids showed maximal difference at 5:00 AM (lean vs. OW/OB) and at 5:00 PM (OW/OB vs. T2DM). Metabolites that were identified with both robust 24-h rhythms and significant concentration differences between study groups emphasize the importance of controlling the time of day for diagnosis and biomarker discovery, offering a significant improvement over current single sampling.-Isherwood, C. M., Van der Veen, D. R., Johnston, J. D., Skene, D. J. Twenty-four-hour rhythmicity of circulating metabolites: effect of body mass and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , Adult , Biomarkers/metabolism , Body Mass Index , Circadian Rhythm/physiology , Female , Humans , Male , Metabolomics/methods , Middle Aged , Overweight/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...