Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Cureus ; 16(9): e68593, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39371743

ABSTRACT

BACKGROUND:  Total knee arthroplasty (TKA) may result in significant blood loss, but it is an effective and affordable treatment for severe osteoarthritis in the knees. While intravenous (IV) tranexamic acid (TXA) is a commonly used technique, intraarticular (IA) TXA has just recently started to gain traction in joint replacement procedures. The purpose of this research was to examine the mean postoperative hemoglobin concentration in order to assess the effectiveness of TXA administered IV vs IA after TKA. OBJECTIVE: To assess the effectiveness of intraarticular TXA against intravenous administration. MATERIALS AND METHODS: The six-month randomized controlled experiment was started from October 5, 2022, to April 4, 2023, at "the Orthopedics Department of Sir Ganga Ram Hospital in Lahore". The experiment included 60 patients undergoing TKA, ranging in age from 30 to 70. All members of the surgical team, including the supervisor (a consultant surgeon), assistants, and researchers, were present throughout the surgery. A high, thigh tourniquet was employed in every case, and a medial parapatellar technique was performed as well. Before the tourniquet was inflated, individuals in the intravenous group received 1 g of TXA intravenously 15-30 minutes beforehand. In the IA group, the "patient received an injection of 2 g of TXA in a 20 mL solution" straight into the joint after the prosthesis was implanted and secured. Data were analyzed using SPSS (version 26), with numerical data (age, BMI, surgical length, and hemoglobin levels) presented as mean ± SD and categorical factors (gender, American Society of Anesthesiologists (ASA) class, anatomical side) shown as frequency and percentage. The mean postoperative hemoglobin levels were compared between groups using an independent sample t-test, with data stratified by various factors and p ≤ 0.05 considered significant. RESULTS: There were 60 patients in this study, ranging in age from 30 to 70. The mean±SD age was 48.73±10.35 years. Patients' mean BMI was 25.51±4.48 kg/m², with representation across underweight, normal, overweight, and obese categories. The procedure took 173.10±32.61 minutes. The overall postoperative hemoglobin concentration was significantly higher in the IA TXA group (12.12±1.32 g/dL) compared to the IV TXA group (11.11±1.10 g/dL), with a p-value of 0.02. Additionally, when stratified by age, the IA TXA group consistently demonstrated higher postoperative hemoglobin levels across all age brackets, with significant differences observed in the 51-60 years (p = 0.001) and 61-70 years (p = 0.011) groups. Gender-based comparisons showed that IA TXA was associated with higher postoperative hemoglobin levels for both males (p < 0.05) and females (p < 0.05) compared to IV TXA. CONCLUSION: This study demonstrates that IA administration of TXA is more effective in maintaining higher postoperative hemoglobin concentrations compared to IV TXA in patients undergoing TKA. The IA TXA group consistently achieved significantly higher hemoglobin levels across various age groups and both genders, indicating superior efficacy in reducing blood loss associated with TKA. These findings suggest that IA TXA could be a preferable alternative to IV TXA for enhancing postoperative hemoglobin recovery and potentially improving patient outcomes in knee arthroplasty procedures.

2.
J Environ Manage ; 369: 122336, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39243422

ABSTRACT

Nutrient imbalances, such as high boron (B) stress, occur within, as well as across, agricultural systems worldwide and have become an important abiotic factor that reduces soil fertility and inhibits plant growth. Sugar beet is a B-loving crop and is better suited to be grown in high B environments, but the methods and mechanisms regarding the enhancement of high-B stress tolerance traits are not clear. The main objective of this research was to elucidate the effects of the alone and/or combined foliar spraying of zinc sulfate (ZnSO4) and methyl jasmonate (MeJA) on the growth parameters, tolerance, and photochemical performance of sugar beet under high-B stress. Results demonstrated that the photosynthetic performance was inhibited under high-B stress, with a reduction of 11.33% in the net photosynthetic rate (Pn) and an increase of 25.30% in the tolerance index. The application of ZnSO4, MeJA, and their combination enhanced sugar beet's adaptability to high-B stress, with an increase in Pn of 9.22%, 4.49%, and 2.85%, respectively, whereas the tolerance index was elevated by 15.33%, 8.21%, and 5.19%, respectively. All three ameliorative treatments resulted in increased photochemical efficiency (Fv/Fm) and the photosynthetic performance index (PIABS) of PSII. Additionally, they enhanced the light energy absorption (ABS/RC) and trapping capacity (DIO/RC), reduced the thermal energy dissipation (TRO/RC), and facilitated the QA to QB transfer in the electron transport chain (ETC) of PSII, which collectively improved the photochemical performance. Therefore, spraying both ZnSO4 and MeJA can better alleviate high-B stress and promote the growth of sugar beet, but the combined spraying effect of ZnSO4 and MeJA is lower than that of individual spraying. This study provides a reference basis for enhancing the ability of sugar beet and other plants to tolerate high-B stress and for sugar beet cultivation in high B areas.


Subject(s)
Acetates , Beta vulgaris , Boron , Cyclopentanes , Oxylipins , Photosynthesis , Plant Leaves , Zinc , Beta vulgaris/drug effects , Beta vulgaris/growth & development , Beta vulgaris/radiation effects , Cyclopentanes/pharmacology , Photosynthesis/drug effects , Plant Leaves/drug effects , Acetates/pharmacology , Stress, Physiological
3.
Int J Mol Sci ; 25(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39126047

ABSTRACT

Plants communicate underground by secreting multiple amino acids (AAs) through their roots, triggering defense mechanisms against cadmium (Cd) stress. However, the specific roles of the individual AAs in Cd translocation and detoxification remain unclear. This study investigated how exogenous AAs influence Cd movement from the roots to the shoots in Cd-resistant and Cd-sensitive Chinese cabbage cultivars (Jingcui 60 and 16-7 cultivars). The results showed that methionine (Met) and cysteine (Cys) reduced Cd concentrations in the shoots of Jingcui 60 by approximately 44% and 52%, and in 16-7 by approximately 43% and 32%, respectively, compared to plants treated with Cd alone. However, threonine (Thr) and aspartic acid (Asp) did not show similar effects. Subcellular Cd distribution analysis revealed that AA supplementation increased Cd uptake in the roots, with Jingcui 60 preferentially storing more Cd in the cell wall, whereas the 16-7 cultivar exhibited higher Cd concentrations in the organelles. Moreover, Met and Cys promoted the formation of Cd-phosphate in the roots of Jingcui 60 and Cd-oxalate in the 16-7 cultivar, respectively. Further analysis showed that exogenous Cys inhibited Cd transport to the xylem by downregulating the expression of HMA2 in the roots of both cultivars, and HMA4 in the 16-7 cultivar. These findings provide insights into the influence of exogenous AAs on Cd partitioning and detoxification in Chinese cabbage plants.


Subject(s)
Amino Acids , Brassica , Cadmium , Plant Roots , Cadmium/toxicity , Cadmium/metabolism , Brassica/metabolism , Brassica/drug effects , Amino Acids/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Biological Transport , Plant Shoots/metabolism , Plant Shoots/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics
4.
Chemosphere ; 362: 142781, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972262

ABSTRACT

The possible potential application of Fe-NPs on Fe nutrition, heavy metals uptake and soil microbial community needs to be investigated. In the current research, a pot experiment was used to examine the implications of Fe-NPs (α-Fe2O3 and Fe3O4) on maize growth, Fe uptake and transportation, soil microbial community, and environmental risk. Fe3O4, α-Fe2O3, FeSO4 at a rate of 800 mg Fe kg-1 were applied in soils with four replications under a completely randomized design for a period of 60 days. Results showed that Fe uptake by maize roots were increased by 107-132% than control, with obvious variations across different treatments (Fe3O4> α-Fe2O3> FeSO4> control). Similarly, plant height, leaf surface area, and biomass were increased by 40-64%, 52-91% and 38-109% respectively, with lower values by FeSO4 application. The elevated level of chlorophyll contents and carotenoids and significant effects with control on antioxidant enzymes activities (i.e., catalase, and superoxide dismutase) suggested that application of Fe-NPs improved overall biochemical processes. The differential expression of important Fe transporters (i.e., ZmYS1 and ZmFER1) as compared to control indicated the plant strategic response for efficient uptake and distribution of Fe. Importantly, Fe-NPs reduced the heavy metals uptake (i.e., chromium, cadmium, arsenic, nickel, copper) by complex formation, and showed no toxicity to the soil microbial community. In summary, the application of Fe-NPs can be a promising approach for improving crop productivity and Fe nutrition without negatively affecting soil microbial community, and fostering sustainable agricultural production.


Subject(s)
Ferric Compounds , Iron , Soil Pollutants , Zea mays , Zea mays/growth & development , Zea mays/drug effects , Zea mays/metabolism , Ferric Compounds/chemistry , Iron/metabolism , Soil/chemistry , Soil Microbiology , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Metals, Heavy/metabolism , Chlorophyll/metabolism , Magnetite Nanoparticles/chemistry
5.
Poult Sci ; 103(8): 103883, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865767

ABSTRACT

Aflatoxin B1 (AFB1) is an unavoidable environmental toxin. The accumulation of AFB1 and its metabolites in the liver poses a threat to both human and animal health. Curcumin exhibits anti-oxidative, anti-tumor, and anti-inflammatory properties. There is no report on the mechanism regarding how curcumin relived liver necroptosis in chickens induced by AFB1 based on the regulatory network of ceRNA. To explore this, we performed transmission electron microscopy and sequenced lncRNA and mRNA in chicken livers treated with AFB1 and/or curcumin for 28 d in vivo. We observed substantial alterations in the lncRNA and mRNA expression profiles within the chicken liver, indicating that curcumin can mitigate AFB1-induced necroptosis both in vivo and in vitro. Further analysis, including the establishment of an lncRNA-miRNA-mRNA network and the utilization of a dual luciferase reporter assay, revealed that LOC769044 acts as a competing endogenous RNA (ceRNA) for miR-1679. In addition, STAT1 was identified as a direct target of miR-1679. Modulating miR-1679 levels through overexpression, and silencing LOC769044 and STAT1, effectively reversed the necroptotic effects induced by AFB1, a reversal that was also observed with curcumin supplementation. In conclusion, our data demonstrate that curcumin alleviates AFB1-induced liver necroptosis through the LOC769044/miR-1679/STAT1 signaling axis. This study suggests that LOC769044 may serve as a novel therapeutic target for managing AFB1-mediated liver toxicity.


Subject(s)
Aflatoxin B1 , Chickens , Curcumin , Liver , MicroRNAs , Necroptosis , STAT1 Transcription Factor , Animals , Curcumin/pharmacology , Aflatoxin B1/toxicity , MicroRNAs/metabolism , MicroRNAs/genetics , Necroptosis/drug effects , Liver/drug effects , Liver/metabolism , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Poultry Diseases/chemically induced , Poultry Diseases/prevention & control , Avian Proteins/metabolism , Avian Proteins/genetics
6.
Sci Rep ; 14(1): 12195, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806561

ABSTRACT

High temperature stress influences plant growth, seed yield, and fatty acid contents by causing oxidative damage. This study investigated the potential of thiourea (TU) to mitigate oxidative stress and restoring seed oil content and quality in canola. The study thoroughly examined three main factors: (i) growth conditions-control and high temperature stress (35 °C); (ii) TU supplementation (1000 mg/L)-including variations like having no TU, water application at the seedling stage, TU application at seedling stage (BBCH Scale-39), water spray at anthesis stage, and TU application at anthesis stage (BBCH Scale-60); (iii) and two canola genotypes, 45S42 and Hiola-401, were studied separately. High temperature stress reduced growth and tissue water content, as plant height and relative water contents were decreased by 26 and 36% in 45S42 and 27 and 42% Hiola-401, respectively, resulting in a substantial decrease in seed yield per plant by 36 and 38% in 45S42 and Hiola-401. Seed oil content and quality parameters were also negatively affected by high temperature stress as seed oil content was reduced by 32 and 35% in 45S42 and Hiola-401. High-temperature stress increased the plant stress indicators like malondialdehyde, H2O2 content, and electrolyte leakage; these indicators were increased in both canola genotypes as compared to control. Interestingly, TU supplementation restored plant performance, enhancing height, relative water content, foliar chlorophyll (SPAD value), and seed yield per plant by 21, 15, 30, and 28% in 45S42; 19, 13, 26, and 21% in Hiola-401, respectively, under high temperature stress as compared to control. In addition, seed quality, seed oil content, linoleic acid, and linolenic acid were improved by 16, 14, and 22% in 45S42, and 16, 11, and 23% in Hiola-401, as compared to control. The most significant improvements in canola seed yield per plant were observed when TU was applied at the anthesis stage. Additionally, the research highlighted that canola genotype 45S42 responded better to TU applications and exhibited greater resilience against high temperature stress compared to genotype Hiola-401. This interesting study revealed that TU supplementation, particularly at the anthesis stage, improved high temperature stress tolerance, seed oil content, and fatty acid profile in two canola genotypes.


Subject(s)
Antioxidants , Brassica napus , Seeds , Thiourea , Brassica napus/genetics , Brassica napus/drug effects , Brassica napus/growth & development , Brassica napus/metabolism , Thiourea/pharmacology , Thiourea/analogs & derivatives , Antioxidants/metabolism , Seeds/drug effects , Seeds/metabolism , Seeds/growth & development , Hot Temperature , Oxidative Stress/drug effects , Genotype , Heat-Shock Response/drug effects , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism
7.
Front Vet Sci ; 11: 1383291, 2024.
Article in English | MEDLINE | ID: mdl-38784653

ABSTRACT

Babesiosis, a zoonotic blood protozoal disease, threatens humans and animals and is difficult to treat due to growing antimicrobial resistance. The study aimed to investigate the therapeutic efficacy of artesunate (AS), a well-known derivative of artemisinin, against Babesia microti (B. microti) using a murine infection model. Male BALB/c mice (6 weeks old; 15 per group) were chosen and randomly divided into 1) the control group, 2) the B. microti group, and 3) the B. microti + artesunate treatment groups. AS treatment at 2 mg/kg, 4 mg/kg, and 8 mg/kg of body weight significantly (p < 0.05) reduced the B. microti load in blood smears in a dose-dependent manner. Additionally, AS treatment mitigated the decrease in body weight and restored the normal state of the liver and spleen viscera index compared to the B. microti-infected group after 28 days. Hematological analysis revealed significant increases in RBC, WBC, and PLT counts post-AS treatment compared to the B. microti-infected group. Furthermore, AS administration resulted in significant reductions in total protein, bilirubin, ALT, AST, and ALP levels, along with reduced liver and spleen inflammation and lesions as observed through histopathological analysis. AS also elicited dose-dependent changes in mRNA and protein expression levels of apoptotic, proinflammatory, and anti-inflammatory cytokines in the liver compared to the control and B. microti-infected groups. Immunolabeling revealed decreased expression of apoptotic and inflammation-related proteins in AS-treated hepatic cytoplasm compared to the B. microti-infected group. AS also in dose-dependent manner decreased apoptotic protein and increased Bcl-2. Overall, these findings underscore the potential of AS as an anti-parasitic candidate in combating B. microti pathogenesis in an in vivo infection model, suggesting its promise for clinical trials as a treatment for babesiosis.

8.
Sci Total Environ ; 923: 171406, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38432361

ABSTRACT

Global climate change has significantly impacted the production of various crops, particularly long-term fruit-bearing plants such as citrus. This study analyzed the fruit quality of 12 citrus orchards (Citrus Sinensis L.Osbeck cv. Bingtang) in a subtropical region in Yunnan, China from 2014 to 2022. The results indicated that high rainfall (>220 mm) and low cumulative temperature (<3150 °C) promoted increases in titratable acidity (>1.8 %) in young fruits. As the fruits further expanded (with a horizontal diameter increasing from 50 to 65 mm), excessive rainfall (300-400 mm), lower cumulative temperature (<2400 °C), and a reduced diurnal temperature range (<10 °C) hindered decreases in titratable acidity. Conversely, low rainfall (<220 mm), high cumulative temperature (>3150 °C), and a high diurnal temperature range (>14 °C) promoted the accumulation of soluble solids in young fruits (9 %) at 120 days after flowering (DAF). Furthermore, low rainfall (<100 mm) favored the accumulation of soluble solids (1.5 %) during fruit expansion (195-225DAF). To quantify the relationship between fruit acidity and climate variables at 120 DAF, we developed a regression model, which was further validated by actual measurements and accurately predicted fruit acidity in 2023. Our findings have the potential to assist citrus growers in optimizing cultivation techniques for the production of high-quality citrus under increasingly variable climatic conditions.


Subject(s)
Citrus sinensis , Citrus , Climate Change , China , Cold Temperature , Fruit
9.
Plant Physiol Biochem ; 207: 108401, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38301327

ABSTRACT

The exogenous application of amino acids (AAs) generally alleviates cadmium (Cd) toxicity in plants by altering their subcellular distribution. However, the physiological mechanisms underlying AA-mediated cell wall (CW) sequestration of Cd in Chinese cabbage remain unclear. Using two genotypes of Chinses cabbage, Jingcui 60 (Cd-tolerant) and 16-7 (Cd-sensitive), we characterized the root structure, subcellular distribution of Cd, CW component, and related gene expression under the Cd stress. Cysteine (Cys) supplementation led to a reduction in the Cd concentration in the shoots of Jingcui 60 and 16-7 by 65.09 % and 64.03 %, respectively. Addition of Cys alleviated leaf chlorosis in both cultivars by increasing Cd chelation in the root CW and reducing its distribution in the cytoplasm and organelles. We further demonstrated that Cys supplementation mediated the downregulation of PMEI1 expression and improving the activity of pectin methyl-esterase (PME) by 17.98 % and 25.52 % in both cultivars, respectively, compared to the Cd treatment, resulting in an approximate 12.00 %-14.70 % increase in Cd retention in pectin. In contrast, threonine (Thr) application did not significantly alter Cd distribution in the shoots of either cultivar. Taken together, our results suggest that Cys application reduces Cd root-to-shoot translocation by increasing Cd sequestration in the root CW through the downregulation of pectin methyl-esterification.


Subject(s)
Brassica , Soil Pollutants , Pectins/metabolism , Cadmium/metabolism , Amino Acids/metabolism , Esterification , Brassica/genetics , Brassica/metabolism , Plant Roots/metabolism , Soil Pollutants/metabolism
10.
Plant Physiol Biochem ; 206: 108277, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104397

ABSTRACT

Sugar beet, a zinc-loving crop, is increasingly limited by zinc deficiency worldwide. Foliar zinc application is an effective and convenient way to supplement zinc fertilizer. However, the regulatory mechanism of foliar zinc spraying on sugar beet leaf photosynthetic characteristics remains unclear. Therefore, we investigated the effects of foliar ZnSO4·7H2O application (0, 0.1%, 0.2%, and 0.4%) on the photosynthetic performance of sugar beet leaves under controlled hydroponic conditions. The results indicated that a foliar spray of 0.2% Zn fertilizer was optimal for promoting sugar beet leaf growth. This concentration significantly reduced the leaf shape index of sugar beet, notably increasing leaf area, leaf mass ratio, and specific leaf weight. Foliar spraying of Zn (0.2%) substantially elevated the Zn content in sugar beet leaves, along with calcium (Ca) and magnesium (Mg) contents. Consequently, this led to an increase in the potential photochemical activity of PSII (Fv/Fo) (by 6.74%), net photosynthetic rate (Pn) (11.39%), apparent electron transport rate (ETR) (11.43%), actual photochemical efficiency of PSⅡ (Y (Ⅱ)) (11.46%), photochemical quenching coefficient (qP) (15.49%), and total chlorophyll content (25.17%). Ultimately, this increased sugar beet leaf dry matter weight (11.30%). In the cultivation and management of sugar beet, the application of 0.2% Zn fertilizer (2.88 mg plant-1) exhibited the potential to enhance Zn and Mg contents in sugar beet, improve photochemical properties, stimulate leaf growth, and boost light assimilation capacity. Our result suggested the foliar application of Zn might be a useful strategy for sugar beet crop management.


Subject(s)
Beta vulgaris , Plant Leaves , Zinc , Calcium , Chlorophyll , Fertilizers , Magnesium , Photosynthesis , Plant Leaves/chemistry , Sugars , Zinc/pharmacology
11.
Nanomaterials (Basel) ; 13(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38063732

ABSTRACT

Iron (Fe) oxide nanoparticles (NPs) improve crop growth. However, the comparative effect of root and foliar-applied different sources of Fe oxide NPs on plant performance at morphological and physiological levels still needs to be discovered. In this study, we characterized the growth and physiological responses of hydroponic-cultured maize seedlings to four sources of Fe (i.e., α-Fe2O3, γ-Fe2O3, Fe3O4 NPs, and bulk Fe3O4) and two application methods (root vs. foliar). Results showed that Fe concentration in root and shoot increased by elevating the level of NPs from 100 mg L-1 to 500 mg L-1. Overall, the responses of maize seedlings to different sources of Fe oxide NPs were as follows: Fe3O4 > γ-Fe2O3 > α-Fe2O3 > bulk Fe3O4. The application of Fe at concentrations ranging from 100 mg L-1 to 500 mg L-1 had no significant effects on various growth parameters of maize, including biomass, chlorophyll content, and root length. Iron oxide NPs increased the plant biomass by 23-37% by root application, whereas it was 5-9% by foliar application. Chlorophyll contents were increased by 29-34% and 18-22% by foliar and root applications, respectively. The non-significant response of reactive oxygen species (i.e., superoxide dismutase, catalase, and peroxidase) suggested optimum maize performance for supplementing Fe oxide NPs. A confocal laser scanning microscope suggested that Fe oxide NPs entered through the epidermis and from the cortex to the endodermis. Our results provide a scientific basis that the root application of Fe3O4 at the rate of 100 mg L-1 is a promising approach to obtain higher maize performance and reduce the quantity of fertilizer used in agriculture to minimize environmental effects while improving crop productivity and quality. These findings demonstrated the tremendous potential of Fe NPs as an environmentally friendly and sustainable crop approach.

12.
Heliyon ; 9(11): e21332, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37964821

ABSTRACT

Photoacoustic imaging is a good method for biological imaging, for this purpose, materials with strong near infrared (NIR) absorbance are required. In the present study, machine learning models are used to predict the light absorption behavior of polymers. Molecular descriptors are utilized to train a variety of machine learning models. Building blocks are searched from chemical databases, as well as new building blocks are designed using chemical library enumeration method. The Breaking Retrosynthetically Interesting Chemical Substructures (BRICS) method is employed for the creation of 10,000 novel polymers. These polymers are designed based on the input of searched and selected building blocks. To enhance the process, the optimal machine learning model is utilized to predict the UV/visible absorption maxima of the newly designed polymers. Concurrently, chemical similarity analysis is also performed on the selected polymers, and synthetic accessibility of selected polymers is calculated. In summary, the polymers are all easy to synthesize, increasing their potential for practical applications.

13.
Front Plant Sci ; 14: 1272098, 2023.
Article in English | MEDLINE | ID: mdl-37965011

ABSTRACT

Improving nitrogen use efficiency (NUE) without compromising yield remains a crucial agroecological challenge in theory and practice. Some meta-analyses conducted in recent years investigated the impact of nitrogen (N) fertilizer on crop yield and gaseous emissions, but most are region-specific and focused on N sources and application methods. However, various factors affecting yield and N fertilizer efficiency in wheat crops on a global scale are not extensively studied, thus highlighting the need for a comprehensive meta-analysis. Using 109 peer-reviewed research studies (published between 2000 and 2022) from 156 experimental sites (covering 36.8, 38.6 and 24.6% of coarse, medium, and fine texture soils, respectively), we conducted a global meta-analysis to elucidate suitable N management practices and the key factors influencing N fertilization efficiency in wheat as a function of yield and recovery efficiency and also explained future perspectives for efficient N management in wheat crop. Overall, N fertilization had a significant impact on wheat yield. A curvilinear relationship was found between N rates and grain yield, whereas maximum yield improvement was illustrated at 150-300 kg N ha-1. In addition, N increased yield by 92.18% under direct soil incorporation, 87.55% under combined chemical and organic fertilizers application, and 72.86% under split application. Site-specific covariates (climatic conditions and soil properties) had a pronounced impact on N fertilization efficiency. A significantly higher yield response was observed in regions with MAP > 800 mm, and where MAT remained < 15 °C. Additionally, the highest yield response was observed with initial AN, AP and AK concentrations at < 20, < 10 and 100-150 mg kg-1, respectively, and yield response considerably declined with increasing these threshold values. Nevertheless, regression analysis revealed a declining trend in N recovery efficiency (REN) and the addition of N in already fertile soils may affect plant uptake and RE. Global REN in wheat remained at 49.78% and followed a negative trend with the further increase of N supply and improvement in soil properties. Finally, an advanced N management approach such as "root zone targeted fertilization" is suggested to reduce fertilizer application rate and save time and labor costs while achieving high yield and NUE.

14.
Molecules ; 28(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37959807

ABSTRACT

Mycoplasma gallisepticum (MG) is recognized as a principal causative agent of avian chronic respiratory disease, inflicting substantial economic losses upon the poultry industry. However, the extensive use of conventional antibiotics has resulted in the emergence of drug resistance and various challenges in their clinical application. Consequently, there is an urgent need to identify effective therapeutic agents for the prevention and treatment of mycoplasma-induced respiratory disease in avian species. AMP-activated protein kinase (AMPK) holds significant importance as a regulator of cellular energy metabolism and possesses the capacity to exert an anti-inflammatory effect by virtue of its downstream protein, SIRT1. This pathway has shown promise in counteracting the inflammatory responses triggered by pathogenic infections, thus providing a novel target for studying infectious inflammation. Quercetin possesses anti-inflammatory activity and has garnered attention as a potential alternative to antibiotics. However, there exists a gap in knowledge concerning the impact of this activation on MG-induced inflammatory damage. To address this knowledge gap, we employed AlphaFold2 prediction, molecular docking, and kinetic simulation methods to perform a systematic analysis. As expected, we found that both quercetin and the AMPK activator AICAR activate the chicken AMPKγ1 subunit in a similar manner, which was further validated at the cellular level. Our project aims to unravel the underlying mechanisms of quercetin's action as an agonist of AMPK against the inflammatory damage induced by MG infection. Accordingly, we evaluated the effects of quercetin on the prevention and treatment of air sac injury, lung morphology, immunohistochemistry, AMPK/SIRT1/NF-κB pathway activity, and inflammatory factors in MG-infected chickens. The results confirmed that quercetin effectively inhibits the secretion of pro-inflammatory cytokines such as IL-1ß, TNF-α, and IL-6, leading to improved respiratory inflammation injury. Furthermore, quercetin was shown to enhance the levels of phosphorylated AMPK and SIRT1 while reducing the levels of phosphorylated P65 and pro-inflammatory factors. In conclusion, our study identifies the AMPK cascade signaling pathway as a novel cellular mediator responsible for quercetin's ability to counter MG-induced inflammatory damage. This finding highlights the potential significance of this pathway as an important target for anti-inflammatory drug research in the context of avian respiratory diseases.


Subject(s)
Mycoplasma gallisepticum , NF-kappa B , Animals , NF-kappa B/metabolism , AMP-Activated Protein Kinases/metabolism , Quercetin/pharmacology , Quercetin/therapeutic use , Mycoplasma gallisepticum/metabolism , Sirtuin 1/metabolism , Molecular Docking Simulation , Chickens/metabolism , Inflammation/drug therapy , Inflammation/prevention & control , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Bacterial Agents/therapeutic use
15.
Biomedicines ; 11(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37892981

ABSTRACT

This umbrella review aimed to determine the various drugs used to treat trigeminal neuralgia (TN) and to evaluate their efficacies as well as side effects by surveying previously published reviews. An online search was conducted using PubMed, CRD, EBSCO, Web of Science, Scopus, and the Cochrane Library with no limits on publication date or patients' gender, age, and ethnicity. Reviews and meta-analyses of randomized controlled trials pertaining to drug therapy for TN, and other relevant review articles added from their reference lists, were evaluated. Rapid reviews, reviews published in languages other than English, and reviews of laboratory studies, case reports, and series were excluded. A total of 588 articles were initially collected; 127 full-text articles were evaluated after removing the duplicates and screening the titles and abstracts, and 11 articles were finally included in this study. Except for carbamazepine, most of the drugs had been inadequately studied. Carbamazepine and oxcarbazepine continue to be the first choice for medication for classical TN. Lamotrigine and baclofen can be regarded as second-line drugs to treat patients not responding to first-line medication or for patients having intolerable side effects from carbamazepine. Drug combinations using carbamazepine, baclofen, gabapentin, ropivacaine, tizanidine, and pimozide can yield satisfactory results and improve the tolerance to the treatment. Intravenous lidocaine can be used to treat acute exaggerations and botulinum toxin-A can be used in refractory cases. Proparacaine, dextromethorphan, and tocainide were reported to be inappropriate for treating TN. Anticonvulsants are successful in managing trigeminal neuralgia; nevertheless, there have been few studies with high levels of proof, making it challenging to compare or even combine their results in a statistically useful way. New research on other drugs, combination therapies, and newer formulations, such as vixotrigine, is awaited. There is conclusive evidence for the efficacy of pharmacological drugs in the treatment of TN.

16.
ACS Omega ; 8(42): 39408-39419, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901499

ABSTRACT

Designing molecules for pharmaceutical purposes has been a significant focus for several decades. The pursuit of novel drugs is an arduous and financially demanding undertaking. Nevertheless, the integration of computer-assisted frameworks presents a swift avenue for designing and screening drug-like compounds. Within the context of this research, we introduce a comprehensive approach for the design and screening of compounds tailored to the treatment of prostate cancer. To forecast the biological activity of these compounds, we employed machine learning (ML) models. Additionally, an automated process involving the deconstruction and reconstruction of molecular building blocks leads to the generation of novel compounds. Subsequently, the ML models were utilized to predict the biological activity of the designed compounds, and the t-SNE method was employed to visualize the chemical space covered by the novel compounds. A meticulous selection process identified the most promising compounds, and their potential for synthesis was assessed, offering valuable guidance to experimental chemists in their investigative endeavors. Furthermore, fingerprint and heatmap analysis were conducted to evaluate the chemical similarity among the selected compounds. This multifaceted approach, encompassing predictive modeling, compound generation, visualization, and similarity assessment, underscores our commitment to refining the process of identifying potential candidates for further exploration in prostate cancer treatment.

17.
Plants (Basel) ; 12(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687393

ABSTRACT

Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.

18.
Plant Physiol Biochem ; 202: 107944, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37579682

ABSTRACT

Nanotechnology has emerged as a key empowering technology for agriculture production due to its higher efficiency and accurate target delivery. However, the sustainable and effective application of nanotechnology requires nanomaterials (NMs) to have higher stability and less aggregation/coagulation at the reaction sites. This can ideally be achieved by modifying NMs with some surfactants or capping agents to ensure higher efficiency. These modified nanomaterials (MNMs) stabilize the interface where NMs interact with their medium of preparation and showed a significant improvement in mobility, reactivity, and controlled release of active ingredients for nano-enabled agriculture. Several environmental factors (e.g., pH, organic matter and the oxidation-reduction potential) could alter the interaction of MNMs with agricultural plants. Firstly, this novel review article introduces production technologies and a few frequently used modification agents in synthesizing MNMs. Next, we critically elaborate the leveraging progress in the modified nano-enabled agronomy and unveil their phytoremediation potential. Lastly, we propose a framework to overcome current challenges and develop a strategy for safe, effective and acceptable applications of MNMs in nano-enabled agriculture. However, the long-term effectiveness and reactivity of MNMs should be investigated to assess their technology effectiveness and optimize the process design to draw definite conclusions.


Subject(s)
Nanostructures , Agriculture , Nanotechnology , Plants
19.
Poult Sci ; 102(8): 102824, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37393707

ABSTRACT

It has been reported that dietary administration of Bacillus subtilis KC1 is effective in alleviating lung injury induced by Mycoplasma gallisepticum (MG) infection in chickens. However, the underlying molecular mechanism of B. subtilis KC1 against MG infection is still unclear. The purpose of this study was to determine whether B. subtilis KC1 could alleviate MG infection-induced lung injury in chickens by regulating their gut microbiota. The results of this study indicate that B. subtilis KC1 supplementation has the potential to alleviate MG infection-induced lung injury as reflected by reduced MG colonization, reduced pathologic changes, and decreased production of pro-inflammatory cytokines. In addition, B. subtilis KC1 supplementation was partially effective in alleviating the gut microbiota disorder caused by MG infection. Importantly, B. subtilis KC1 enriched the beneficial Bifidobacterium animalis in gut and thus reversed indole metabolic dysfunction caused by MG infection. B. subtilis KC1 supplementation increased levels of indole, which enhanced aryl hydrocarbon receptor activation, improving barrier function and alleviating lung inflammation caused by MG. Overall, this study indicates that B. subtilis KC1 has a "gut-lung axis" mechanism that can reduce the severity of MG infection by enriching intestinal B. animalis and regulating indole metabolism.


Subject(s)
Bifidobacterium animalis , Lung Injury , Mycoplasma gallisepticum , Probiotics , Animals , Bacillus subtilis/physiology , Chickens/physiology , Lung Injury/veterinary , Probiotics/pharmacology
20.
Mol Divers ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37418166

ABSTRACT

The role of NLRP3 inflammasome in innate immunity is newly recognized. The NLRP3 protein is a family of nucleotide-binding and oligomerization domain-like receptors as well as a pyrin domain-containing protein. It has been shown that NLRP3 may contribute to the development and progression of a variety of diseases, such as multiple sclerosis, metabolic disorders, inflammatory bowel disease, and other auto-immune and auto-inflammatory conditions. The use of machine learning methods in pharmaceutical research has been widespread for several decades. An important objective of this study is to apply machine learning approaches for the multinomial classification of NLRP3 inhibitors. However, data imbalances can affect machine learning. Therefore, a synthetic minority oversampling technique (SMOTE) has been developed to increase the sensitivity of classifiers to minority groups. The QSAR modelling was performed using 154 molecules retrieved from the ChEMBL database (version 29). The accuracy of the multiclass classification top six models was found to fall within ranges of 0.99 to 0.86, and log loss ranges of 0.2 to 2.3, respectively. The results showed that the receiver operating characteristic curve (ROC) plot values significantly improved when tuning parameters were adjusted and imbalanced data was handled. Moreover, the results demonstrated that SMOTE offers a significant advantage in handling imbalanced datasets as well as substantial improvements in overall accuracy of machine learning models. The top models were then used to predict data from unseen datasets. In summary, these QSAR classification models exhibited robust statistical results and were interpretable, which strongly supported their use for rapid screening of NLRP3 inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL