Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(3): e24585, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317907

ABSTRACT

This paper presents composite beam splitters realized with polymer materials for developing photonic integrated circuits. We used organic-inorganic hybrid polymer materials to form this composite beam splitter realized with step-index (SI) core profiles. We used the alternating direction implicit technique of the Rsoft CAD BeamPROP solver to design and analyze these beam splitters. We successfully examined and manipulated the beam splitter's polarization dependency to obtain a 99% output efficiency with a 50:50 splitting ratio. The SI beam splitter exhibits an excess loss of 0.014 dB. When we apply polarized light in this beam splitter, the excess loss increases to 2 dB, and this loss gradually decreases as the angle of incident light increases. The excess loss reduces to 0.05 dB at the 31-degree angles of the incident polarized light. We also investigated the crosstalk of this beam splitter by varying the wavelength, and it is evident that the lowest crosstalk is -19.77 dB at the polarized angle of 31°.

2.
Opt Express ; 30(3): 3524-3537, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209608

ABSTRACT

In this paper, Y-branched circular core single-mode/few-mode polymer optical waveguides are designed and fabricated using the Mosquito method we have developed. They comprise a low loss multiplexing (MUX) device for mode division multiplexing. In the Mosquito method, since a liquid core monomer is dispensed into another liquid cladding monomer while the needle scans along the path of the wiring patterns, it was difficult to form in-plane core crossings and core branches. In this paper, to form single-mode/few-mode Y-branched cores, we apply a unicursal needle-scan path for the Y-branch structure with the Mosquito method. For MUX device applications, cores satisfying the single-mode condition are successfully formed on the two-port side while the one-port side has a few-mode core.

3.
Opt Express ; 30(3): 4351-4364, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209673

ABSTRACT

In this paper, we present a low-loss optical assembly utilizing a 90°-bent graded-index (GI) core polymer optical waveguide on vertical cavity surface emitting laser (VCSEL) based optical transceivers. The proposed assembly can replace conventional components such as mirrors and lenses for realizing subminiature optical engines applicable to on-board integration. To minimize the total insertion loss of the waveguide when connected to a high-speed VCSEL and a GI-core multimode fiber (MMF) at each end, the characteristics of the beam emitted from VCSELs are measured and taken into consideration for the waveguide design. In order to confirm the effect of insertion loss reduction by the waveguide numerical aperture control, 90°-bent GI-core polymer waveguides are fabricated applying the Mosquito method. The fabricated waveguide exhibits a total insertion loss as low as about 2 dB at 850-nm wavelength, which includes the coupling losses at both ends, bending, and propagation losses. We also investigate a way to reduce the insertion loss when a gap exists between the waveguide and VCSEL chip. We theoretically and experimentally confirm that filling the gap with a high index resin can reduce the coupling loss by 5 dB.

4.
Opt Express ; 29(6): 9513-9531, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33820377

ABSTRACT

We create a compact low-loss spot-size converter (SSC) which utilizes a tapered core polymer optical waveguide with circular cross-sectional graded-index (GI) core using the Mosquito method we developed. First, we theoretically analyze the mutual diffusion between the core and cladding monomers, which is a feature unique to the Mosquito method when forming GI cores. The monomer diffusion effect depends on the initial core diameter that is dispensed by a microdispenser and the diffusion time before UV curing: in a small core the monomer diffuses more rapidly than in a large core. Using this diffusion dependence on the initially dispensed core diameter, it is theoretically found that a tapered polymer waveguide based SSC can adiabatically convert the mode-field diameter between 4.0 and 8.6 µm at a 1550-nm wavelength waveguide as short as 4 mm. Next, the tapered waveguide based SSC with the designed structure is experimentally fabricated using the Mosquito method, and we confirm an 8-mm long tapered waveguide with an insertion loss of 1.83dB functions as a SSC that converts the MFD from 4.7 µm to 7.5 µm at 1550-nm wavelength.

5.
Sci Rep ; 10(1): 2266, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32042000

ABSTRACT

Sapphirinid copepods, which are marine zooplankton, exhibit tunable structural colors originating from a layered structure of guanine crystal plates. In the present study, the coloring portion of adult male of a sapphirinid copepod, Sapphirina nigromaculata, under the dorsal body surface was characterized to clarify the regulation and actuation mechanism of the layered guanine crystals for spectral control. The coloring portions are separated into small domains 70-100 µm wide consisting of an ordered array of stacked hexagonal plates ~1.5 µm wide and ~80 nm thick. We found the presence of chitin-based honeycomb frameworks that are composed of flat compartments regulating the guanine crystal plates. The structural color is deduced to be tuned from blue to achromatic via yellow and purple by changing the interplate distance according to vital observation and optical simulation using a photonic array model. The framework structures are essential for the organization and actuation of the particular photonic arrays for the exhibition of the tunable structural color.


Subject(s)
Chitin/ultrastructure , Color , Copepoda/ultrastructure , Guanine/chemistry , Zooplankton/ultrastructure , Adaptation, Biological , Animals , Chitin/chemistry , Copepoda/physiology , Crystallization , Male , Microscopy, Electron, Scanning , Predatory Behavior , Zooplankton/physiology
6.
Opt Express ; 27(22): 32465-32479, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31684459

ABSTRACT

We experimentally fabricate circular core 3-dimensional (3D) crossover single-mode polymer optical waveguides using a photomask free unique fabrication technique named the Mosquito method for realizing channel shuffling. The 3D crossover structure is accomplished by forming four cores (2 ch. × 2 ch.) with different heights: the last two channels cross over the first two channels with horizontal and vertical core bending. We compare the insertion losses between the fabricated 3D single-mode crossover waveguide and 3D S-bend core waveguides fabricated separately, which correspond to the lower and upper channels in the crossover waveguide. Then, we investigate the effect of the core crossover on the loss, and find that almost negligible additional loss is observed. The average insertion losses of this 6-cm long 3D crossover single-mode waveguide are 3.95 and 3.81 dB at 1310 nm, and 5.74 and 4.80 dB at 1550-nm wavelength, for the lower and upper channels, respectively. The interchannel crosstalk in this crossover waveguide is observed to be lower than -40 dB, while the 1 dB radial alignment tolerance is ± 1.7 and ± 2.1 µm at 1310 and 1550 nm, respectively. These results suggest that the fabricated circular core single-mode 3D crossover polymer waveguides could have a great impact for high-bandwidth-density on-board and inter-chip optical interconnect applications.

7.
Opt Express ; 27(16): 22419-22428, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510536

ABSTRACT

A 75-cm-long circular-core polymer waveguide compatible with standard 50-µm-core multimode fibers (MMFs) is designed and fabricated by using a direct inscribing method for high-speed and high-density optical interconnects. The fabricated waveguide has low loss (<0.044 dB/cm at 850 nm) and low crosstalk (<-34 dB with a core pitch of 62.5 µm) with a negligible coupling loss with the MMFs. It also exhibits a low bending loss (<0.08 dB/mm with a bending radius of 4 mm), which agrees well with calculated results. Error-free NRZ data transmission over the 75-cm-long waveguide at 25 Gb/s is demonstrated, and 4 × 25 Gb/s short wavelength division multiplexing (SWDM) is realized on a straight waveguide. Moreover, a two-layer waveguide and a 3-dimensional (3D) Y-splitter/combiner are also fabricated for 3D integration.

8.
Opt Express ; 27(8): 10839-10853, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31052938

ABSTRACT

We design graded-index (GI) circular-core waveguides to realize low-loss light coupling via 45-degree mirrors using a ray-trace simulator. The waveguide's structural parameters, which determine the insertion loss of the waveguides with 45-degree mirrors, are the cladding thickness, the core size, the refractive index of materials, and the mirror angle. The optimum waveguide structural parameters are determined, and the GI circular-core waveguide with the appropriate structural parameters which is actually fabricated exhibits much lower total link loss than step-index (SI) core waveguides. The tight optical confinement of the GI-core contributes to the reduction of loss increment due to the mirror structure.

9.
Opt Express ; 26(12): 15632-15641, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-30114821

ABSTRACT

We fabricate multimode polymer optical waveguides with circular graded-index (GI) cores which are aligned in parallel at desired positions using the Mosquito method. In the Mosquito method, three-dimensional wiring patterns can be formed with a simple process. However, the core position is likely to deviate from the designed position because of multiple fabrication factors. Hence, in this paper, the dominant parameters to influence on the core height in the cladding are investigated both theoretically and experimentally. In particular, a linear relationship between the core height and the needle-tip height is confirmed with theoretical fluid analysis. Using this relationship, we succeeded in fabricating a waveguide in which the maximum variation of the core height from the designed value is controlled to be less than 10 µm.

10.
Opt Express ; 26(4): 4512-4521, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475301

ABSTRACT

In this paper, crossed polymer waveguides with graded-index (GI) square cores are fabricated using the soft-lithography method. We experimentally demonstrate that the fabricated GI-core crossed waveguides exhibit a much lower insertion loss than conventional step index (SI)-core counterparts, which is almost independent of the cross angle. We also show in this paper that the crossed waveguides fabricated applying organic-inorganic hybrid resins show remarkably high thermal resistance compared to the waveguides fabricated utilizing an acrylate resin and a dopant system we previously reported.

11.
Opt Express ; 25(8): 8524-8533, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28437931

ABSTRACT

We fabricate low-loss single-mode (SM) polymer optical waveguides using a photomask-free simple technique named the Mosquito method. The insertion losses of a 5-cm long SM polymer waveguide fabricated are 2.52 dB and 4.03 dB at 1310- and 1550-nm wavelengths, respectively. The coupling loss between a single-mode fiber and the waveguide is as low as 0.5 dB including the Fresnel reflection. The 0.5-dB misalignment tolerance in the radial direction is ± 2.0 µm at 1550 nm. The Mosquito method is promising for fabricating SM polymer optical waveguides compatible with silicon photonics chips.

12.
Opt Express ; 24(4): 3550-61, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26907012

ABSTRACT

We experimentally investigate the optical loss of graded-index (GI) core polymer optical waveguides with a 45-degree mirror on their one end fabricated using the photo-addressing method. In addition, we also theoretically analyze the loss of GI square-core waveguides with mirrors using a ray-trace simulation tool. Then, in the waveguide based optical link including the optical path conversions via 45-degree mirrors, we show that GI waveguides realize lower total optical loss than conventional step-index (SI) core waveguides. The lower loss in the GI waveguide link is attributed to the tight optical confinement at the core center even after reflection at the mirrors.

13.
Opt Express ; 23(17): 22262-73, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26368198

ABSTRACT

We present an index profile design for remarkably low loss multimode optical crossed waveguide. In this paper, we theoretically calculate the light propagation loss in crossed waveguides with step-index (SI) and graded-index (GI) square cores utilizing a ray tracing simulation. In this simulation, we focus on the index exponent values for the GI profile, which allows low crossing loss even if the number of crossing is as large as 50 or even if the crossing angle is as low as 20°. It is revealed that an index exponent of 2.0 for the GI core strongly contributes to exhibit 35 times lower loss (0.072 dB after 50-perpendicular crosses) compared to the loss of the SI-core counterpart (2.58 dB after the same crossings). The GI cores with a smaller index exponent exhibit better loss in crossed waveguides with a wide range of crossing angles from 30° to 90°. Furthermore, we discuss the effect of the refractive index profile at the intersection on the optical loss of crossed waveguides.

14.
Opt Express ; 23(2): 1585-93, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25835916

ABSTRACT

A fan-in/out polymer optical waveguide with 25-µm cores and 40-µm interchannel pitch is fabricated for a multimode multicore fiber using a microdispenser. We design a fan-in/out structure to which the Mosquito method is applicable since the Mosquito method is capable of drawing a circular graded-index core three-dimensionally. Then, we experimentally fabricate a 10-cm long fan-in/out polymer waveguide with seven cores, which is expected to connect a multicore fiber and a fiber ribbon. A minimum insertion loss of 5.26 dB at 850-nm wavelength for a 10-cm long fan-in/out waveguide is experimentally observed. Causes of variation in the insertion loss and interchannel pitch are discussed.

15.
Opt Express ; 22(8): 9675-86, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24787853

ABSTRACT

We theoretically analyze the origin of inter-channel crosstalk in densely aligned multimode parallel optical waveguides for on-board interconnects using the Beam Propagation Method. In this paper, we demonstrate that the inter-channel crosstalk due to mode coupling is very low in graded-index (GI) circular-core waveguides because the propagation constants of the propagating modes are discrete. Additionally, it is also found that the waveguides with GI-type circular cores is sensitive to the optical confinement in the cladding: low-power cladding modes largely decrease the mode conversion.

16.
Opt Express ; 22(7): 8426-37, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24718216

ABSTRACT

We successfully fabricate polymer optical waveguides with graded-index (GI) circular cores whose diameter and interchannel pitch are accurately controlled using the Mosquito method: GI-core waveguides with 250-, 125- and 62.5-µm pitches are successfully obtained. The Mosquito method utilizing a microdispenser is a very simple technique for fabricating GI-circular-core polymer optical waveguides. The accurately controlled pitch is confirmed by a high connectivity with a commercially available multimode fiber (MMF) ribbon with a 125-µm pitch. Furthermore, by inserting the waveguide between two 12-channel MMF ribbons, we experimentally demonstrate 11.3 Gbps × 12 Ch. parallel signal transmission through a GI-core waveguide with a 125-µm pitch for the first time to the best of our knowledge.

17.
Appl Opt ; 52(25): 6344-9, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-24085096

ABSTRACT

We demonstrate an amplitude-based bending/displacement sensor that uses a plastic photonic bandgap Bragg fiber with one end coated with a silver layer. The reflection intensity of the Bragg fiber is characterized in response to different displacements (or bending curvatures). We note that the Bragg reflector of the fiber acts as an efficient mode stripper for the wavelengths near the edge of the fiber bandgap, which makes the sensor extremely sensitive to bending or displacements at these wavelengths. Besides, by comparison of the Bragg fiber sensor to a sensor based on a standard multimode fiber with similar outer diameter and length, we find that the Bragg fiber sensor is more sensitive to bending due to the presence of a mode stripper in the form of a multilayer reflector. Experimental results show that the minimum detection limit of the Bragg fiber sensor can be as small as 3 µm for displacement sensing.

18.
Opt Express ; 21(3): 3651-7, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23481821

ABSTRACT

In this paper, we demonstrate a nonlinear optical device based on a fiber taper coated with a carbon nanotube (CNT)/polymer composite. Using this device, four wave mixing (FWM) based wavelength conversion of 10 Gb/s Non-return-to-zero signal is achieved. In addition, we investigate wavelength tuning, two photon absorption and estimate the effective nonlinear coefficient of the CNTs embedded in the tapered fiber to be 1816.8 W(-1)km(-1).


Subject(s)
Fiber Optic Technology/instrumentation , Nanotubes, Carbon/chemistry , Polymers/chemistry , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis
19.
Opt Express ; 19(15): 14018-30, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21934763

ABSTRACT

For applications in high-density and high-speed optical interconnections, we propose to utilize polymer parallel optical waveguides (PPOWs) with so-called W-shaped refractive index profile in the core area. A W-shaped index profile is composed of a parabolic index distribution surrounded by a narrow index valley, followed by a cladding with a uniform refractive index. We expect that W-shaped index profiles contribute to decreasing the inter-channel crosstalk due to mode conversion in the waveguides. In this paper, we investigate how much the index difference of the index valley improves the crosstalk value. First, we fabricate polymer waveguides with various index profiles by changing the composition of the copolymer for cladding. We show the results that a 1-m long W-shaped profile PPOW has not only low propagation loss (0.027 dB/cm), but an inter-channel crosstalk (~-40 dB) lower than those of graded index (GI) core PPOW we previously fabricated. Next, we theoretically analyze the propagation loss and inter-channel crosstalk in polymer waveguides with different index profiles by means of a ray tracing model in which the light scattering effect is included. The calculation results indicate that the index valley surrounding each core works properly for preventing the power coupling from the cladding modes to the propagation modes, and consequently, very low inter-channel crosstalk is realized with W-shaped index profiles.

20.
Opt Lett ; 36(12): 2378-80, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21686026

ABSTRACT

Stimulated Brillouin scattering (SBS) in a perfluorinated graded-index polymer optical fiber (POF) with 120 µm core diameter was experimentally observed for the first time, to the best of our knowledge, at 1.55 µm wavelength with the pump-probe technique. Compared to spontaneous Brillouin scattering previously reported, the Brillouin gain spectrum (BGS) was detected with an extremely high signal-to-noise ratio, even with a short POF (1 m) and scrambled polarization state. We also investigated the BGS dependences on probe power and temperature, which indicate that SBS in a POF measured with this technique can be utilized to develop high-accuracy temperature sensing systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...