Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3330, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684656

ABSTRACT

Meiotic prophase progression is differently regulated in males and females. In males, pachytene transition during meiotic prophase is accompanied by robust alteration in gene expression. However, how gene expression is regulated differently to ensure meiotic prophase completion in males remains elusive. Herein, we identify HSF5 as a male germ cell-specific heat shock transcription factor (HSF) for meiotic prophase progression. Genetic analyzes and single-cell RNA-sequencing demonstrate that HSF5 is essential for progression beyond the pachytene stage under non-stress conditions rather than heat stress. Chromatin binding analysis in vivo and DNA-binding assays in vitro suggest that HSF5 binds to promoters in a subset of genes associated with chromatin organization. HSF5 recognizes a DNA motif different from typical heat shock elements recognized by other canonical HSFs. This study suggests that HSF5 is an atypical HSF that is required for the gene expression program for pachytene transition during meiotic prophase in males.


Subject(s)
Heat Shock Transcription Factors , Male , Animals , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Mice , Pachytene Stage/genetics , Chromatin/metabolism , Chromatin/genetics , Spermatocytes/metabolism , Spermatocytes/cytology , Promoter Regions, Genetic/genetics , Heat-Shock Response/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Spermatogenesis/genetics , Meiotic Prophase I , Mice, Knockout
2.
Genes Dev ; 38(3-4): 115-130, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38383062

ABSTRACT

H3K9 trimethylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that in male meiosis, ATF7IP2 amasses on autosomal and X-pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X-pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global up-regulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.


Subject(s)
Heterochromatin , Histones , Germ Cells/metabolism , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/metabolism , Meiosis/genetics , Methylation , Male
3.
DNA Res ; 31(1)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38153767

ABSTRACT

The Zinc finger and SCAN domain containing 4 (ZSCAN4) protein, expressed transiently in pluripotent stem cells, gametes, and early embryos, extends telomeres, enhances genome stability, and improves karyotypes in mouse embryonic stem (mES) cells. To gain insights into the mechanism of ZSCAN4 function, we identified genome-wide binding sites of endogenous ZSCAN4 protein using ChIP-seq technology in mouse and human ES cells, where the expression of endogenous ZSCAN4 was induced by treating cells with retinoic acids or by overexpressing DUX4. We revealed that both mouse and human ZSCAN4 bind to the TGCACAC motif located in CA/TG microsatellite repeats, which are known to form unstable left-handed duplexes called Z-DNA that can induce double-strand DNA breaks and mutations. These ZSCAN4 binding sites are mostly located in intergenic and intronic regions of the genomes. By generating ZSCAN4 knockout in human ES cells, we showed that ZSCAN4 does not seem to be involved in transcriptional regulation. We also found that ectopic expression of mouse ZSCAN4 enhances the suppression of chromatin at ZSCAN4-binding sites. These results together suggest that some of the ZSCAN4 functions are mediated by binding to the error-prone regions in mouse and human genomes.


Subject(s)
Genome, Human , Transcription Factors , Humans , Animals , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Zinc Fingers , Microsatellite Repeats , DNA-Binding Proteins/genetics
4.
Genes Cells ; 28(12): 831-844, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778747

ABSTRACT

Mouse ES cell populations contain a minor sub-population that expresses genes specifically expressed in 2-cell stage embryos. This sub-population consists of 2-cell-gene labeled cells (2CLCs) generated by the transient activation of the 2-cell specific genes initiated by the master regulator, Dux. However, the mechanism regulating the transient expression remains largely unclear. Here we reported a novel function of Zfp352, one of the 2-cell specific genes, in regulating the 2CLC sub-population. Zfp352 encodes zinc-finger transcription factor belonging to the Klf family. Dux transiently activates Zfp352 after the activation of Zscan4c in a subset of the 2CLC subpopulation. Interestingly, in the reporter assay, the transcriptional activation of Zscan4c by Dux is strongly repressed by the co-expression of Zfp352. However, the knockout of Zfp352 resulted in the repression of a subset of the 2-cell-specific genes. These data suggest the dual roles of Zfp352 in regulating the transient activation of the 2-cell-specific genes.


Subject(s)
DNA-Binding Proteins , Mouse Embryonic Stem Cells , Transcription Factors , Animals , Mice , Gene Expression Regulation, Developmental , Mouse Embryonic Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
5.
bioRxiv ; 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37873266

ABSTRACT

H3K9 tri-methylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that, in male meiosis, ATF7IP2 amasses on autosomal and X pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global upregulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.

6.
Nat Commun ; 14(1): 6443, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880249

ABSTRACT

Meiosis is differently regulated in males and females. In females, germ cells initiate meiosis within a limited time period in the fetal ovary and undergo a prolonged meiotic arrest until puberty. However, how meiosis initiation is coordinated with the cell cycle to coincide with S phase remains elusive. Here, we demonstrate that STRA8 binds to RB via the LXCXE motif. Mutation of the RB-binding site of STRA8 in female mice delays meiotic entry, which consequently delays progression of meiotic prophase and leads to precocious depletion of the oocyte pool. Single-cell RNA-sequencing analysis reveals that the STRA8-RB interaction is required for S phase entry and meiotic gene activation, ensuring precise timing of meiosis initiation in oocytes. Strikingly, the results suggest STRA8 could sequester RB from E2F during pre-meiotic G1/S transition. This study highlights the gene regulatory mechanisms underlying the female-specific mode of meiotic initiation in mice.


Subject(s)
Adaptor Proteins, Signal Transducing , Meiosis , Animals , Female , Male , Mice , Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation , Germ Cells/metabolism , Sexual Maturation , Retinoblastoma Protein
7.
Nat Commun ; 14(1): 6420, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828010

ABSTRACT

Identification of factors that regulate chromatin condensation is important for understanding of gene regulation. High-mobility group AT-hook (HMGA) proteins 1 and 2 are abundant nonhistone chromatin proteins that play a role in many biological processes including tissue stem-progenitor cell regulation, but the nature of their protein function remains unclear. Here we show that HMGA2 mediates direct condensation of polynucleosomes and forms droplets with nucleosomes. Consistently, most endogenous HMGA2 localized to transposase 5- and DNase I-inaccessible chromatin regions, and its binding was mostly associated with gene repression, in mouse embryonic neocortical cells. The AT-hook 1 domain was necessary for chromatin condensation by HMGA2 in vitro and in cellulo, and an HMGA2 mutant lacking this domain was defective in the ability to maintain neuronal progenitors in vivo. Intrinsically disordered regions of other proteins could substitute for the AT-hook 1 domain in promoting this biological function of HMGA2. Taken together, HMGA2 may regulate neural cell fate by its chromatin condensation activity.


Subject(s)
Chromatin , Gene Expression Regulation , Mice , Animals , Nucleosomes , Stem Cells , Cell Differentiation/genetics
8.
Aging Cell ; 22(9): e13925, 2023 09.
Article in English | MEDLINE | ID: mdl-37476844

ABSTRACT

Neurons decline in their functionality over time, and age-related neuronal alterations are associated with phenotypes of neurodegenerative diseases. In nonneural tissues, an infolded nuclear shape has been proposed as a hallmark of aged cells and neurons with infolded nuclei have also been reported to be associated with neuronal activity. Here, we performed time-lapse imaging in the visual cortex of Nex-Cre;SUN1-GFP mice. Nuclear infolding was observed within 10 min of stimulation in young nuclei, while the aged nuclei were already infolded pre-stimulation and showed reduced dynamics of the morphology. In young nuclei, the depletion of the stimuli restored the nucleus to a spherical shape and reduced the dynamic behavior, suggesting that nuclear infolding is a reversible process. We also found the aged nucleus to be stiffer than the young one, further relating to the age-associated loss of nuclear shape dynamics. We reveal temporal changes in the nuclear shape upon external stimulation and observe that these morphological dynamics decrease with age.


Subject(s)
Neurons , Visual Cortex , Mice , Animals , Visual Cortex/physiology
9.
Reproduction ; 165(5): 507-520, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36866926

ABSTRACT

In brief: Apart from mice, meiosis initiation factors and their transcriptional regulation mechanisms are largely unknown in mammals. This study suggests that STRA8 and MEIOSIN are both meiosis initiation factors in mammals, but their transcription is epigenetically regulated differently from each other. Abstract: In the mouse, the timing of meiosis onset differs between sexes due to the sex-specific regulation of the meiosis initiation factors, STRA8 and MEIOSIN. Before the initiation of meiotic prophase I, the Stra8 promoter loses suppressive histone-3-lysine-27 trimethylation (H3K27me3) in both sexes, suggesting that H3K27me3-associated chromatin remodelling may be responsible for activating STRA8 and its co-factor MEIOSIN. Here we examined MEIOSIN and STRA8 expression in a eutherian (the mouse), two marsupials (the grey short-tailed opossum and the tammar wallaby) and two monotremes (the platypus and the short-beaked echidna) to ask whether this pathway is conserved between all mammals. The conserved expression of both genes in all three mammalian groups and of MEIOSIN and STRA8 protein in therian mammals suggests that they are the meiosis initiation factors in all mammals. Analyses of published DNase-seq and chromatin-immunoprecipitation sequencing (ChIP-seq) data sets confirmed that H3K27me3-associated chromatin remodelling occurred at the STRA8, but not the MEIOSIN, promoter in therian mammals. Furthermore, culturing tammar ovaries with an inhibitor of H3K27me3 demethylation before meiotic prophase I affected STRA8 but not MEIOSIN transcriptional levels. Our data suggest that H3K27me3-associated chromatin remodelling is an ancestral mechanism that allows STRA8 expression in mammalian pre-meiotic germ cells.


Subject(s)
Histones , Meiosis , Animals , Female , Male , Mice , Adaptor Proteins, Signal Transducing/genetics , Chromatin Assembly and Disassembly , Germ Cells/metabolism , Histones/metabolism , Mammals/genetics , Tretinoin/metabolism
10.
J Reprod Dev ; 69(3): 139-146, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-36927827

ABSTRACT

In mouse fetal gonads, germ cell development is accompanied by changes in cell cycle mode in response to external signals and intrinsic mechanisms of cells. During fetal development, male germ cells undergo G0/G1 arrest, while female germ cells exit the mitotic cell cycle and enter meiosis. In fetal testes, NANOS2 and CYP26B1 force germ cells to stay in G0/G1 arrest phase, preventing them from entering the meiotic cell cycle. In the fetal ovary, external signals, such as RA, BMP, and WNT, promote the competency of female germ cells to enter the meiotic cell cycle. MEIOSIN and STRA8 ensure the establishment of the meiotic cell cycle by activating meiotic genes, such that meiotic entry coincides with the S phase. This review discusses germ cell development from the viewpoint of cell cycle regulation and highlights the mechanism of the entry of germ cells into meiosis.


Subject(s)
Germ Cells , Tretinoin , Male , Female , Mice , Animals , Meiosis , Testis/metabolism , Cell Differentiation , Mammals/metabolism
11.
Curr Top Dev Biol ; 151: 1-26, 2023.
Article in English | MEDLINE | ID: mdl-36681467

ABSTRACT

Meiosis is critical for germ cell development in multicellular organisms. Initiation of meiosis coincides with pre-meiotic S phase, which is followed by meiotic prophase, a prolonged G2 phase that ensures numerous meiosis-specific chromosome events. Meiotic prophase is accompanied by robust alterations of gene expression. In mouse germ cells, MEIOSIN and STRA8 direct cell cycle switch from mitosis to meiosis. MEIOSIN and STRA8 coordinate meiotic initiation with cell cycle, by activating the meiotic genes to have meiotic prophase program installed at S phase. This review mainly focuses on the mechanism of meiotic initiation in mouse germ cells from the viewpoint of the transcription of meiotic genes. Furthermore, signaling pathways that regulate meiotic initiation will be discussed in the context of germ cell development, pointing out the sexual differences in the mode of meiotic initiation.


Subject(s)
Adaptor Proteins, Signal Transducing , Meiosis , Mice , Animals , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Mitosis , Signal Transduction , Germ Cells
12.
Genes Cells ; 28(1): 15-28, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36371617

ABSTRACT

In mammals, primordial germ cells (PGCs) enter meiosis and differentiate into primary oocytes in embryonic ovaries. Previously, we demonstrated that meiotic gene induction and meiotic initiation were impaired in female germline cells of conditional knockout (CKO) mice lacking the Smarcb1 (Snf5) gene, which encodes a core subunit of the switching defective/sucrose non-fermenting (SWI/SNF) complex. In this study, we classified meiotic genes expressed at lower levels in Snf5 CKO females into two groups based on promoter accessibility. The promoters of 74% of these genes showed lower accessibility in mutant mice, whereas those of the remaining genes were opened without the SWI/SNF complex. Notably, the former genes included Meiosin, which encodes a transcriptional regulator essential for meiotic gene activation. The promoters of the former and the latter genes were mainly modified with H3K27me3/bivalent and H3K4me3 histone marks, respectively. A subset of the former genes was precociously activated in female PGCs deficient in polycomb repressive complexes (PRCs). Our results point to a mechanism through which the SWI/SNF complex coordinates meiotic gene activation via the remodeling of PRC-repressed genes, including Meiosin, in female germline cells.


Subject(s)
Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone , Animals , Female , Mice , Chromatin , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Germ Cells/metabolism , Mammals/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
13.
Nat Commun ; 13(1): 7212, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443288

ABSTRACT

Meiotic sex chromosome inactivation (MSCI) is an essential process in the male germline. While genetic experiments have established that the DNA damage response (DDR) pathway directs MSCI, due to limitations to the experimental systems available, mechanisms underlying MSCI remain largely unknown. Here we establish a system to study MSCI ex vivo, based on a short-term culture method, and demonstrate that active DDR signaling is required both to initiate and maintain MSCI via a dynamic and reversible process. DDR-directed MSCI follows two layers of modifications: active DDR-dependent reversible processes and irreversible histone post-translational modifications. Further, the DDR initiates MSCI independent of the downstream repressive histone mark H3K9 trimethylation (H3K9me3), thereby demonstrating that active DDR signaling is the primary mechanism of silencing in MSCI. By unveiling the dynamic nature of MSCI, and its governance by active DDR signals, our study highlights the sex chromosomes as an active signaling hub in meiosis.


Subject(s)
Epigenesis, Genetic , Sex Chromosomes , Sex Chromosomes/genetics , Signal Transduction , Meiosis/genetics , DNA Damage
15.
STAR Protoc ; 3(2): 101452, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35719267

ABSTRACT

Here, we describe a protocol for extraction and tandem immunoprecipitation of the cytoplasmic and nuclear proteins from mouse testis for mass spectrometry. This protocol has been applied to knockin mice that express a meiotic protein of interest tagged with 3xFLAG-HA in the testis. The protocol is optimized for salt extraction of cytoplasmic and nuclear proteins from mouse frozen testes and thus can be used for a variety of proteins. For complete details on the use and execution of this protocol, please refer to Ishiguro et al. (2020) and Tanno et al. (2022).


Subject(s)
Nuclear Proteins , Testis , Animals , Chromatography, Affinity/methods , Male , Mass Spectrometry , Mice , Nuclear Proteins/genetics , Plant Extracts
16.
PLoS Genet ; 18(6): e1010241, 2022 06.
Article in English | MEDLINE | ID: mdl-35648791

ABSTRACT

Meiosis is a hallmark event in germ cell development that accompanies sequential events executed by numerous molecules. Therefore, characterization of these factors is one of the best strategies to clarify the mechanism of meiosis. Here, we report tripartite motif-containing 41 (TRIM41), a ubiquitin ligase E3, as an essential factor for proper meiotic progression and fertility in male mice. Trim41 knockout (KO) spermatocytes exhibited synaptonemal complex protein 3 (SYCP3) overloading, especially on the X chromosome. Furthermore, mutant mice lacking the RING domain of TRIM41, required for the ubiquitin ligase E3 activity, phenocopied Trim41 KO mice. We then examined the behavior of mutant TRIM41 (ΔRING-TRIM41) and found that ΔRING-TRIM41 accumulated on the chromosome axes with overloaded SYCP3. This result suggested that TRIM41 exerts its function on the chromosome axes. Our study revealed that Trim41 is essential for preventing SYCP3 overloading, suggesting a TRIM41-mediated mechanism for regulating chromosome axis protein dynamics during male meiotic progression.


Subject(s)
Nuclear Proteins , Synaptonemal Complex , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Male , Meiosis/genetics , Mice , Mice, Knockout , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Spermatocytes/metabolism , Synaptonemal Complex/genetics , Synaptonemal Complex/metabolism , Ubiquitin-Protein Ligases/genetics
17.
PLoS Biol ; 20(6): e3001678, 2022 06.
Article in English | MEDLINE | ID: mdl-35687590

ABSTRACT

Cells must adjust the expression levels of metabolic enzymes in response to fluctuating nutrient supply. For glucose, such metabolic remodeling is highly dependent on a master transcription factor ChREBP/MondoA. However, it remains elusive how glucose fluctuations are sensed by ChREBP/MondoA despite the stability of major glycolytic pathways. Here, we show that in both flies and mice, ChREBP/MondoA activation in response to glucose ingestion involves an evolutionarily conserved glucose-metabolizing pathway: the polyol pathway. The polyol pathway converts glucose to fructose via sorbitol. It has been believed that this pathway is almost silent, and its activation in hyperglycemic conditions has deleterious effects on human health. We show that the polyol pathway regulates the glucose-responsive nuclear translocation of Mondo, a Drosophila homologue of ChREBP/MondoA, which directs gene expression for organismal growth and metabolism. Likewise, inhibition of the polyol pathway in mice impairs ChREBP's nuclear localization and reduces glucose tolerance. We propose that the polyol pathway is an evolutionarily conserved sensing system for glucose uptake that allows metabolic remodeling.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Glucose , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carbohydrate Metabolism , Drosophila/metabolism , Glucose/metabolism , Mice , Polymers , Transcription Factors/metabolism
18.
Commun Biol ; 5(1): 504, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35618762

ABSTRACT

Mammalian spermatogenesis is a heat-vulnerable process that occurs at low temperatures, and elevated testicular temperatures cause male infertility. However, the current reliance on in vivo assays limits their potential to detail temperature dependence and destructive processes. Using ex vivo cultures of mouse testis explants at different controlled temperatures, we found that spermatogenesis failed at multiple steps, showing sharp temperature dependencies. At 38 °C (body core temperature), meiotic prophase I is damaged, showing increased DNA double-strand breaks (DSBs) and compromised DSB repair. Such damaged spermatocytes cause asynapsis between homologous chromosomes and are eliminated by apoptosis at the meiotic checkpoint. At 37 °C, some spermatocytes survive to the late pachytene stage, retaining high levels of unrepaired DSBs but do not complete meiosis with compromised crossover formation. These findings provide insight into the mechanisms and significance of heat vulnerability in mammalian spermatogenesis.


Subject(s)
DNA Breaks, Double-Stranded , Meiosis , Animals , DNA , Hot Temperature , Male , Mammals/genetics , Mice , Spermatogenesis/genetics , Temperature
19.
Life Sci Alliance ; 5(8)2022 08.
Article in English | MEDLINE | ID: mdl-35470240

ABSTRACT

Microtubule (MT) dynamics are modulated through the coordinated action of various MT-associated proteins (MAPs). However, the regulatory mechanisms underlying MT dynamics remain unclear. We show that the MAP7 family protein Map7D2 stabilizes MTs to control cell motility and neurite outgrowth. Map7D2 directly bound to MTs through its N-terminal half and stabilized MTs in vitro. Map7D2 localized prominently to the centrosome and partially on MTs in mouse N1-E115 neuronal cells, which expresses two of the four MAP7 family members, Map7D2 and Map7D1. Map7D2 loss decreased the resistance to the MT-destabilizing agent nocodazole without affecting acetylated/detyrosinated stable MTs, suggesting that Map7D2 stabilizes MTs via direct binding. In addition, Map7D2 loss increased the rate of random cell migration and neurite outgrowth, presumably by disturbing the balance between MT stabilization and destabilization. Map7D1 exhibited similar subcellular localization and gene knockdown phenotypes to Map7D2. However, in contrast to Map7D2, Map7D1 was required for the maintenance of acetylated stable MTs. Taken together, our data suggest that Map7D2 and Map7D1 facilitate MT stabilization through distinct mechanisms in cell motility and neurite outgrowth.


Subject(s)
Microtubules , Neurons , Animals , Cell Movement/genetics , Mice , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neurons/metabolism , Nocodazole/metabolism , Nocodazole/pharmacology
20.
Elife ; 112022 04 19.
Article in English | MEDLINE | ID: mdl-35438632

ABSTRACT

The MCM2-7 hetero-hexamer is the replicative DNA helicase that plays a central role in eukaryotic DNA replication. In proliferating cells, the expression level of the MCM2-7 hexamer is kept high, which safeguards the integrity of the genome. However, how the MCM2-7 hexamer is assembled in living cells remains unknown. Here, we revealed that the MCM-binding protein (MCMBP) plays a critical role in the assembly of this hexamer in human cells. MCMBP associates with MCM3 which is essential for maintaining the level of the MCM2-7 hexamer. Acute depletion of MCMBP demonstrated that it contributes to MCM2-7 assembly using nascent MCM3. Cells depleted of MCMBP gradually ceased to proliferate because of reduced replication licensing. Under this condition, p53-positive cells exhibited arrest in the G1 phase, whereas p53-null cells entered the S phase and lost their viability because of the accumulation of DNA damage, suggesting that MCMBP is a potential target for killing p53-deficient cancers.


Subject(s)
Carrier Proteins , Tumor Suppressor Protein p53 , Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA Damage , DNA Replication , Humans , Minichromosome Maintenance Complex Component 2/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Proteins/metabolism , Nuclear Proteins/metabolism , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...