Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Clin Exp Pharmacol Physiol ; 48(6): 869-876, 2021 06.
Article in English | MEDLINE | ID: mdl-32920892

ABSTRACT

The sphingosine-1-phosphate (S1P) receptor modulator regulates lymphocyte trafficking, resulting in its depletion from circulation, which ultimately causes immunosuppression. In this study, we investigated the preventive effect of fingolimod (FTY720) in the non-obese type 2 diabetic model, Spontaneously Diabetic Torii (SDT) rats. The S1P receptor modulator, FTY720 (0.3 mg/kg p.o.), was administered for 12 weeks to SDT rats from 5 to 17 weeks of age. Based on our findings, FTY720 could suppress the incidence of diabetes in SDT rats. Further, glucose intolerance was improved in FTY720-treated SDT rats at 14 weeks of age. Based on the haematological and histological analyses performed at 17 to 18 weeks of age, a decrease in lymphocytes and monocytes in the peripheral blood and a decrease in lymphocyte and atrophy in spleen occurred in the FTY720-treated SDT rats. Furthermore, the pancreatic changes, such as inflammation, atrophy, and fibrosis in islets observed in SDT rats were improved by FTY720 treatment. These findings suggest that the immunomodulatory effects of FTY720 reduced the pancreatic lesion in SDT rats, thereby demonstrating its preventive effect against diabetes. The development of diabetes in SDT rats is related to disorders of the immune system. However, the S1P receptor modulator may be useful for treating type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Fingolimod Hydrochloride , Animals , Blood Glucose , Disease Models, Animal , Incidence , Sphingosine-1-Phosphate Receptors
2.
Biol Pharm Bull ; 42(11): 1906-1912, 2019.
Article in English | MEDLINE | ID: mdl-31685773

ABSTRACT

Tumor necrosis factor-α (TNF-α) converting enzyme/a disintegrin and metalloproteinase domain-containing protein 17 (TACE/ADAM17) is a key sheddase that releases TNF-α from its inactive precursor and is thought as a new drug target to inhibit TNF-α production. In the present study, pharmacological effects of a novel TACE selective inhibitor, JTP-96193, on type 2 diabetes and diabetic peripheral neuropathy (DPN) as its major complication was examined. Enzyme inhibitory activity of JTP-96193 on TACE and other ADAMs was measured in in vitro. High fat-induced obese mice and type 2 diabetic KK-Ay mice were used to evaluate the effect of JTP-96193 on insulin resistance. Finally, streptozotocin (STZ)-induced diabetic mice were treated with JTP-96193 to evaluate the sciatic motor nerve conduction velocities (MNCV). JTP-96193 selectively inhibited human TACE activity with IC50 value of 5.4 nM and showed more than 1800-fold selectivity against other matrix metalloproteinases. In mouse models of obesity and diabetes, JTP-96193 reduced the TNF-α release from the fat tissue and prevented development of diabetes and improved insulin resistance, respectively. Furthermore, JTP-96193 prevented delay of sciatic MNCV without any effects on blood glucose or insulin levels in STZ-induced diabetic mice. TACE inhibitor is effective on insulin resistance and DPN independent from glucose-lowering effect. These pharmacological properties of JTP-96193 may be helpful to treat type 2 diabetes accompanied by its microvascular complications.


Subject(s)
ADAM17 Protein/antagonists & inhibitors , Diabetes Mellitus, Experimental/drug therapy , Diabetic Neuropathies/drug therapy , Insulin Resistance , Thiazoles/pharmacology , ADAM17 Protein/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetic Neuropathies/blood , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Rats , Rats, Inbred Lew , Thiazoles/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
3.
J Toxicol Pathol ; 31(4): 283-291, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30393432

ABSTRACT

Metabolic diseases including nonalcoholic steatohepatitis develop due to various environmental factors. In particular, the westernization of food is closely related to the development of these diseases. In this study, we investigated pathophysiological changes in the livers of Zucker fatty (ZF) rats induced by feeding Western diets. Male ZF rats were fed a sucrose/fat/cholesterol-enriched diet (Western diet, WD) or standard diet (SD) for 18 weeks, from 7 to 25 weeks of age. Body weight, food intake, and biochemical parameters were periodically measured, histopathological analyses were performed at 25 weeks, and mRNA expression in the liver was determined. ZF rats fed the WD (ZF-WD rats) developed obesity, hyperinsulinemia, hyperglycemia, and hyperlipidemia, and their alanine aminotransferase and aspartate aminotransferase levels increased compared with those of ZF rats fed the SD (ZF-SD rats). Hepatic lesions including fibrosis and necrosis were observed in the ZF-WD rats at 25 weeks; however, fibrosis and necrosis were not observed in the ZF-SD rats. Oxidative stress markers also increased in the livers of ZF-WD rats. Hepatic mRNA expression related to inflammation and fibrosis increased in the ZF-WD rats; however, mRNA expression related to lipid synthesis decreased. Microsomal triglyceride transfer protein mRNA levels in the ZF-WD rats also decreased. In Zucker lean rats fed the WD, similar changes were observed in the liver; however, the hepatic changes were not serious compared with ZF-WD rats. In conclusion, hepatic lesions, such as inflammation, fibrosis, and necrosis, were observed in the ZF-WD rats. The sucrose/fat/cholesterol-enriched diet induced significant lipotoxicity in the livers of animals in this insulin-resistant model.

4.
Article in English | MEDLINE | ID: mdl-29757463

ABSTRACT

Depression is one of the most common psychiatric diseases and is commonly comorbid with type 1 or 2 diabetes mellitus (DM). However, the pathophysiology underlying the depressive state in DM remains poorly understood. Animal models are useful tools to investigate the association between depression and DM. In the present study we investigated whether the Spontaneously Diabetic Torii (SDT) fatty rat, a novel animal model of type 2 DM, shows depression-related features. We assessed depression-like behaviour, hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis, and neurotransmitter levels in the brain. Behaviour was evaluated using a forced swimming test, and the HPA axis was evaluated with changes in plasma corticosterone levels after a swimming stress exposure or dexamethasone challenge. In addition, serotonin (5-hydroxytryptamine; 5-HT), noradrenaline, glutamate and γ-aminobutyric acid (GABA) concentrations in the frontal cortex, hippocampus and brain stem were measured. In the forced swimming test, SDT fatty rats exhibited increased duration of immobility compared with control Sprague-Dawley (SD) rats. Moreover, basal corticosterone levels were significantly elevated in SDT fatty compared with control SD rats. However, there were no stress-induced increases or changes in dexamethasone-induced suppression of corticosterone in SDT fatty compared with control SD rats. Furthermore, there were significant changes in 5-HT concentrations in the prefrontal cortex, and in GABA and glutamate concentrations in the hippocampus in SDT fatty compared with controls. The results of the present study suggest that the SDT fatty rat may be an appropriate model for diabetes with comorbid depression associated with neurotransmitter impairments and aberrant basal HPA hyperactivity.

5.
J Vet Med Sci ; 80(6): 878-885, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29643297

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a progressive liver disease, and some patients develop hepatic cirrhosis/carcinoma. Animal models play key roles in the development of new therapies for NASH. In this study, the pharmacological effects of metformin and pioglitazone were investigated in female Spontaneously Diabetic Torii (SDT) fatty rats to verify the utility of this model. The anti-diabetic drugs were administered to SDT fatty rats fed a cholesterol-enriched diet from 4 to 25 weeks, and changes in food intake, body weight, and blood chemistry parameters were evaluated every 4 weeks. The hepatic lipid content, mRNA expression in relation to lipid synthesis, inflammation, and fibrosis, and histopathological analyses were performed at 25 weeks. Pioglitazone improved hyperglycemia, hyperlipidemia, and abnormalities in hepatic parameters. The insulin levels were lower than those in the control rats before 16 weeks. Plasma glucose levels in the metformin-treated rats were lower than those in the control rats, and plasma alanine aminotransferase levels temporarily decreased. The lipid content and some mRNA expression in relation to fibrosis in the liver decreased with pioglitazone treatment, and the mRNA expression of microsomal triglyceride transfer protein increased. Hepatic fibrosis observed in the SDT fatty rats improved with pioglitazone treatment; however, the effect with metformin treatment was partial. These results in both drugs are in line with results in the human study, suggesting that the SDT fatty rat is useful for developing new anti-NASH drugs that show potential to regulate glucose/lipid metabolism.


Subject(s)
Disease Models, Animal , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Thiazolidinediones/therapeutic use , Animals , Cholesterol , Diet , Eating , Female , Organ Size , Pioglitazone , RNA, Messenger/metabolism , Rats
6.
J Pharmacol Sci ; 129(1): 51-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26354408

ABSTRACT

Type 2 diabetes mellitus (T2DM) arises primarily due to lifestyle factors and genetics. A number of lifestyle factors are known to be important in the development of T2DM, including obesity. JTT-553, a novel Acyl CoA:diacylglycerol acyltransferase 1 inhibitor, reduced body weight depending on dietary fat in diet-induced obesity (DIO) rats in our previous study. Here, the effect of JTT-553 on glucose metabolism was evaluated using body weight reduction in T2DM mice. JTT-553 was repeatedly administered to DIO and KK-A(y) mice. JTT-553 reduced body weight gain and fat weight in both mouse models. In DIO mice, JTT-553 decreased insulin, non-esterified fatty acid (NEFA), total cholesterol (TC), and liver triglyceride (TG) plasma concentrations in non-fasting conditions. JTT-553 also improved insulin-dependent glucose uptake in adipose tissues and glucose intolerance in DIO mice. In KK-A(y) mice, JTT-553 decreased glucose, NEFA, TC and liver TG plasma concentrations in non-fasting conditions. JTT-553 also decreased glucose, insulin, and TC plasma concentrations in fasting conditions. In addition, JTT-553 decreased TNF-α mRNA levels and increased GLUT4 mRNA levels in adipose tissues in KK-A(y) mice. These results suggest that JTT-553 improves insulin resistance in adipose tissues and systemic glucose metabolism through reductions in body weight.


Subject(s)
Adipose Tissue/drug effects , Body Weight/drug effects , Diabetes Mellitus, Type 2/metabolism , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Glucose/metabolism , Obesity/etiology , Obesity/metabolism , Oxazines/pharmacology , Spiro Compounds/pharmacology , Weight Gain/drug effects , Acyl Coenzyme A , Adipose Tissue/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Diet, High-Fat/adverse effects , Disease Models, Animal , Glucose Transporter Type 4/metabolism , Insulin Resistance , Lipid Metabolism/drug effects , Male , Mice, Inbred C57BL , Mice, Inbred Strains , Oxazines/administration & dosage , Spiro Compounds/administration & dosage , Tumor Necrosis Factor-alpha/metabolism
7.
World J Gastroenterol ; 21(30): 9067-78, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26290633

ABSTRACT

AIM: To investigate the histological features of the liver in spontaneously diabetic Torii (SDT) fatty rats compared with age-matched Sprague-Dawley (SD) rats. METHODS: Female SDT Lepr(fa) (SDT fatty) rats and age-matched SD rats were fed ad libitum. Body weight and biochemical parameters, such as serum glucose, triglyceride (TG), total cholesterol (TC), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels as well as fatty acid and TG accumulation in the liver were evaluated at 8 wk of age in the non-fasting state and at 8-wk intervals from 8 to 40 wk of age. Histopathological examinations of the liver were performed using hematoxylin and eosin and Sirius Red staining as well as double staining for ED-1 and toluidine blue. The expression of genes involved in TG synthesis, inflammation, and fibrosis was examined in the liver. RESULTS: SDT fatty rats showed significantly increased body weight compared with SD rats. Serum glucose, TG, and TC levels were significantly higher in SDT fatty rats compared with SD rats. The serum AST and ALT levels in SDT fatty rats were significantly elevated at 8 wk of age compared with the levels in SD rats. Hepatic TG content was marked in SDT fatty rats from 8 to 32 wk of age. Histopathologically, severe hepatosteatosis accompanied by inflammation was observed at 8 wk of age, and fibrosis started to occur at 32 wk of age. Furthermore, Sirius Red and ED-1 staining were increased in the liver at 32 wk of age. Hepatic gene expression related to TG synthesis, inflammation and fibrosis tended to increase in SDT fatty rats compared with SD rats, and the gene expression related to TG secretion was decreased in SDT fatty rats compared with SD rats. CONCLUSION: Female SDT fatty rats have the potential to become an important animal model of nonalcoholic steatohepatitis with type 2 diabetes and obesity.


Subject(s)
Diabetes Mellitus, Type 2/complications , Liver/pathology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Obesity/complications , Age Factors , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Biomarkers/blood , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Disease Models, Animal , Female , Gene Expression Regulation , Lipids/blood , Liver/enzymology , Liver Cirrhosis, Experimental/pathology , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/genetics , Obesity/blood , Obesity/genetics , RNA, Messenger/metabolism , Rats, Inbred Strains , Rats, Sprague-Dawley , Severity of Illness Index , Sex Factors , Species Specificity , Weight Gain
8.
Eur J Pharmacol ; 758: 72-81, 2015 Jul 05.
Article in English | MEDLINE | ID: mdl-25857225

ABSTRACT

Monoacylglycerol acyltransferase 2 (MGAT2) plays an important role in intestinal fat absorption. We discovered the novel MGAT2 inhibitor, JTP-103237, and evaluated its pharmacological profile. JTP-103237 selectively inhibited MGAT2 without remarkable species differences and reduced absorbed lipids in circulation. After lipid administration, JTP-103237 slightly but significantly decreased triglyceride content in proximal small intestine and significantly increased the lipids content in the distal small intestine. In addition, JTP-103237 significantly increased MGAT substrate (monoacylglycerol and fatty acid) content in the small intestine. JTP-103237 increased plasma peptide YY levels after lipid loading and reduced food intake in a dietary fat-dependent manner. After chronic treatment, JTP-103237 significantly decreased body weight and increased O2 consumption in the early dark phase in high fat diet induced obese (DIO) mice. Moreover, JTP-103237 improved glucose tolerance and decreased fat weight and hepatic triglyceride content in DIO mice. Our findings indicate that JTP-103237 prevents diet-induced obesity by inhibiting intestinal MGAT2 and has unique properties as a drug for the treatment of obesity.


Subject(s)
Acyltransferases/antagonists & inhibitors , Diet, High-Fat/adverse effects , Intestinal Absorption/drug effects , Lipid Metabolism/drug effects , Obesity/prevention & control , Piperazines/pharmacology , Triazoles/pharmacology , Animals , Body Weight/drug effects , COS Cells , Chlorocebus aethiops , Eating/drug effects , Glucose Tolerance Test , Humans , Male , Mice , Obesity/chemically induced , Obesity/metabolism , Oxygen Consumption/drug effects , Peptide YY/blood , Rats
9.
Biol Pharm Bull ; 38(2): 263-9, 2015.
Article in English | MEDLINE | ID: mdl-25747985

ABSTRACT

Acyl CoA:diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the final step in triglyceride (TG) synthesis. This enzyme is considered to be a potential therapeutic target for obesity and diabetes. Here, results of an investigation of the pharmacological effects of JTT-553 [trans-5'-(4-amino-7,7-dimethyl-2-trifluoromethyl-7H-pyrimido[4,5-b][1,4]oxazin-6-yl)-2',3'-dihydrospiro(cyclohexane-1,1'-inden)-4-yl]acetic acid monobenzenesulfonate, a novel DGAT1 inhibitor, are reported. To measure the inhibitory activity of JTT-553 against DGAT1, TG synthesis using [(14)C]-labeled oleoyl-CoA was evaluated. Similarly, the inhibitory activity of JTT-553 against DGAT2, an isozyme of DGAT1, and acyl-CoA cholesterol acyltransferase (ACAT) 1, which is highly homologous to DGAT1, were evaluated. JTT-553 selectively inhibited human DGAT1 and showed comparable inhibitory effects on the activity of human, rat, and mouse DGAT. In vivo, JTT-553 suppressed plasma TG and chylomicron TG levels after olive oil loading in Sprague-Dawley (SD) rats. JTT-553 also inhibited TG synthesis in epididymal fat after [(14)C] oleic acid injection in C57BL/6J mice. Food intake was evaluated in SD rats fed 3.1%, 13%, or 35% (w/w) fat diets. In rats fed the 35% fat diet, JTT-553 reduced food intake. This reduction of food intake was observed 2 h after feeding, lasted for 24 h, and correlated with dietary fat content. Furthermore, JTT-553 reduced daily food intake and body weight gain in diet-induced obese rats after 4-week repeated administration. JTT-553 exerted multiple effects on intestinal fat absorption, adipose fat synthesis, and food intake, and consequently induced body weight reduction. Therefore, JTT-553 is expected to be an effective novel therapeutic agent for the treatment of obesity.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Oxazines/pharmacology , Spiro Compounds/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Body Weight/drug effects , Diacylglycerol O-Acyltransferase/metabolism , Eating , Enzyme Inhibitors/therapeutic use , Humans , Intestine, Small/drug effects , Intestine, Small/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Obesity/drug therapy , Oxazines/therapeutic use , Rats , Rats, Sprague-Dawley , Spiro Compounds/therapeutic use , Triglycerides/blood , Triglycerides/metabolism
10.
J Diabetes Res ; 2014: 363126, 2014.
Article in English | MEDLINE | ID: mdl-25177706

ABSTRACT

The Spontaneously Diabetic Torii (SDT) fatty rat is a new model for obese type 2 diabetes. The aim of the present study was to investigate the effect of 1/2 nephrectomy (Nx) on renal function and morphology and on blood pressure in SDT fatty rats. Male SDT fatty rats underwent 1/2 Nx or a sham operation (Sham). Subsequently, animals were studied with respect to renal function and histological alterations. Induction of 1/2 Nx in SDT fatty rats led to functional and morphological damage to the remnant kidney and to hypertension, which are considered main characteristics of chronic kidney disease, at a younger age compared with the sham group. In conclusion, the SDT fatty rat is useful in investigations to elucidate the pathogenesis of human diabetic nephropathy and in new drug discovery.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Diabetic Nephropathies/etiology , Kidney/surgery , Nephrectomy , Obesity/complications , Animals , Biomarkers/blood , Biomarkers/urine , Blood Pressure , Diabetes Mellitus, Type 2/blood , Diabetic Nephropathies/blood , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/urine , Disease Models, Animal , Hypertension/etiology , Hypertension/physiopathology , Kidney/pathology , Kidney/physiopathology , Male , Rats , Time Factors
11.
J Diabetes Res ; 2014: 583752, 2014.
Article in English | MEDLINE | ID: mdl-24959597

ABSTRACT

Microsomal triglyceride transfer protein (MTP) is involved in the assembly and secretion of triglyceride-rich lipoproteins from enterocytes and hepatocytes. JTT-130 is a novel intestine-specific MTP inhibitor, which has been shown to be useful in the prevention and treatment of dyslipidemia, obesity, and diabetes. JTT-130 has also been shown to suppress food intake in a dietary fat-dependent manner in rats. However, whether JTT-130 enables changes in food preference and nutrient consumption remains to be determined. Therefore, the aim of the present study was to investigate the effects of JTT-130 on food preference in rat under free access to two different diets containing 3.3% fat (low-fat diet, LF diet) and 35% fat (high-fat diet, HF diet). JTT-130 decreased HF diet intake and increased LF diet intake, resulting in a change in ratio of caloric intake from LF and HF diets to total caloric intake. In addition, macronutrient analysis revealed that JTT-130 did not affect carbohydrate consumption but significantly decreased fat consumption (P < 0.01). These findings suggest that JTT-130 not only inhibits fat absorption, but also suppresses food intake and specifically reduces food preference for fat. Therefore, JTT-130 is expected to provide a new option for the prevention and treatment of obesity and obesity-related metabolic disorders.


Subject(s)
Benzamides/pharmacology , Carrier Proteins/metabolism , Dietary Fats , Feeding Behavior , Food Preferences , Intestines/drug effects , Malonates/pharmacology , Animals , Body Weight , Carrier Proteins/antagonists & inhibitors , Diet, High-Fat , Eating , Energy Intake , Male , Obesity/drug therapy , Rats , Rats, Sprague-Dawley , Weight Gain
12.
J Med Chem ; 57(8): 3464-83, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24670009

ABSTRACT

The discovery and optimization of a series of acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) inhibitors based on a pyrimido[4,5-b][1,4]oxazine scaffold is described. The SAR of a moderately potent HTS hit was investigated resulting in the discovery of phenylcyclohexylacetic acid 1, which displayed good DGAT1 inhibitory activity, selectivity, and PK properties. During preclinical toxicity studies a metabolite of 1 was observed that was responsible for elevating the levels of liver enzymes ALT and AST. Subsequently, analogues were synthesized to preclude the formation of the toxic metabolite. This effort resulted in the discovery of spiroindane 42, which displayed significantly improved DGAT1 inhibition compared to 1. Spiroindane 42 was well tolerated in rodents in vivo, demonstrated efficacy in an oral triglyceride uptake study in mice, and had an acceptable safety profile in preclinical toxicity studies.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Oxazines/chemical synthesis , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Dogs , Drug Discovery , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Macaca mulatta , Mice , Mice, Inbred C57BL , Oxazines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Triglycerides/metabolism
13.
Anim Sci J ; 85(5): 588-94, 2014 May.
Article in English | MEDLINE | ID: mdl-24571912

ABSTRACT

Salt plays an important role in the control of blood pressure in obesity and diabetes mellitus. In this study, we investigated physiological changes such as blood pressure and renal function in salt-loaded female Spontaneously Diabetic Torii-Lepr(fa) (SDT fatty) rats. SDT fatty rats were given 1% NaCl in drinking water for 14 weeks, from 4 to 18 weeks of age. Significant salt-sensitive hypertension was observed in the salt-loaded SDT fatty rats. Moreover, the salt-loaded rats showed a decrease of creatinine clearance and deterioration on pathological renal findings, including glomerulosclerosis and tubular and interstitial lesions. Female SDT fatty rat is a useful model for investigating the mechanisms of high salt sensitivity in obesity and diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Sodium Chloride/pharmacology , Animals , Blood Pressure/physiology , Creatinine/metabolism , Female , Kidney/pathology , Kidney/physiopathology , Obesity/physiopathology , Rats , Rats, Sprague-Dawley
14.
J Diabetes Res ; 2013: 948257, 2013.
Article in English | MEDLINE | ID: mdl-23691524

ABSTRACT

Spontaneously Diabetic Torii Lepr (fa) (SDT fatty) rat, established by introducing the fa allele of the Zucker fatty rat into SDT rat genome, is a new model of obese type 2 diabetes. Both male and female SDT fatty rats show overt obesity, and hyperglycemia and hyperlipidemia are observed at a young age as compared with SDT rats. With early incidence of diabetes mellitus, diabetic complications, such as nephropathy, retinopathy, and neuropathy, in SDT fatty rats were seen at younger ages compared to those in the SDT rats. In this paper, we overview pathophysiological features in SDT fatty rats and also describe new insights regarding the hematology, blood pressure, renal complications, and sexual dysfunction. The SDT fatty rats showed an increase of leukocytes, especially the monocyte count, prominent hypertension associated with salt drinking, end-stage renal disease with aging, and hypogonadism. Unlike other diabetic models, the characteristic of SDT fatty rat is to present an incidence of diabetes in females, hypertension, and retinopathy. SDT fatty rat is a useful model for analysis of various metabolic disorders and the evaluation of drugs related to metabolic disease.

15.
J Pharmacol Exp Ther ; 336(3): 850-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21139060

ABSTRACT

The microsomal triglyceride transfer protein (MTP) takes part in the mobilization and secretion of triglyceride-rich lipoproteins from enterocytes and hepatocytes. In this study, we investigated the effects of diethyl-2-({3-dimethylcarbamoyl-4-[(4'-trifluoromethylbiphenyl-2-carbonyl) amino] phenyl}acetyloxymethyl)-2-phenylmalonate (JTT-130), a novel intestine-specific MTP inhibitor, on food intake, gastric emptying, and gut peptides using Sprague-Dawley rats fed 3.1% fat, 13% fat, or 35% fat diets. JTT-130 treatment suppressed cumulative food intake and gastric emptying in rats fed a 35% fat diet, but not a 3.1% fat diet. In rats fed a 13% fat diet, JTT-130 treatment decreased cumulative food intake but not gastric emptying. In addition, treatment with orlistat, a lipase inhibitor, completely abolished the reduction of food intake and gastric emptying by JTT-130 in rats fed a 35% fat diet. On the other hand, JTT-130 treatment increased the plasma concentrations of gut peptides, peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) but not cholecystokinin, in the portal vein in rats fed a 35% fat diet. These elevations in PYY and GLP-1 were also abolished by treatment with orlistat. Furthermore, JTT-130 treatment in rats fed a 35% fat diet increased the contents of triglycerides and free fatty acids in the intestinal lumen, which might contribute to the elevation of PYY and GLP-1 levels. The present findings indicate that JTT-130 causes satiety responses, decreased food intake, and gastric emptying in a dietary fat-dependent manner, with enhanced production of gut peptides such as PYY and GLP-1 from the intestine.


Subject(s)
Appetite Depressants/pharmacology , Benzamides/pharmacology , Carrier Proteins/antagonists & inhibitors , Dietary Fats/administration & dosage , Eating/physiology , Glucagon-Like Peptide 1/blood , Malonates/pharmacology , Peptide YY/blood , Animals , Biomarkers/blood , Carrier Proteins/metabolism , Eating/drug effects , Gastric Emptying/drug effects , Gastric Emptying/physiology , Male , Rats , Rats, Sprague-Dawley
16.
J Vet Med Sci ; 73(2): 169-75, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20877155

ABSTRACT

The Spontaneously Diabetic Torii (SDT) fatty rat, established by introducing the fa allele of the Zucker fatty rat into the SDT rat genome, is a new model of obesity/type 2 diabetes. The present study investigated effects of food restriction on metabolic and endocrinological function in SDT fatty rats. SDT fatty rats were pair-fed with SDT rats from 7 to 21 weeks of age. The SDT fatty rats were already hyperinsulinemic and hyperlipidemic at 7 weeks of age. After 7 weeks of age, SDT fatty rats showed age-dependently increasing serum glucose levels associated with decreasing serum insulin levels. However, in pair-fed SDT fatty rats, hyperglycemia and hyperinsulinemia were attenuated at 9 weeks of age. After 9 weeks of age, the serum insulin levels unexpectedly increased in the pair-fed SDT fatty rats. Glucose tolerance was also improved, and the pancreatic insulin contents were increased in these rats. Pancreatic islets were hypertrophied in pair-fed SDT fatty rats compared with ad lib-fed SDT fatty rats, which were comparable to SDT rats. This study showed that, in SDT fatty rats, calorie restriction by paired-feeding with SDT rats attenuated hyperglycemia and hyperinsulinemia for the first 2 weeks. Thereafter, the serum insulin levels and pancreatic insulin contents were increased, though the restriction was continued. Hypertrophic pancreatic islets were also remarkable, indicating increased beta cell proliferation. The activated pancreatic beta cell functions might be due to rapid food ingestion, a change of feeding behavior resulting form increasing the fasting period, which was indispensable for calorie restriction.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Food Deprivation/physiology , Islets of Langerhans/metabolism , Animals , Body Weight/physiology , Disease Models, Animal , Eating/physiology , Glucokinase/biosynthesis , Glucokinase/genetics , Glucose Transporter Type 2/biosynthesis , Glucose Transporter Type 2/genetics , Histocytochemistry , Insulin/blood , Insulin/genetics , Insulin/metabolism , Insulin Receptor Substrate Proteins/biosynthesis , Insulin Receptor Substrate Proteins/genetics , Islets of Langerhans/ultrastructure , Male , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Zucker , Reverse Transcriptase Polymerase Chain Reaction
17.
J Vet Med Sci ; 73(4): 501-5, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21127391

ABSTRACT

Blood pressure in female SDT-fa/fa rats was periodically investigated at ages 8, 16, and 24 weeks. Furthermore, an insulin therapy was performed for 5 weeks in the female rats at age 11 weeks, and the change of blood pressure was examined. In addition to obesity, hyperglycemia, hyperinsulinemia, and hyperlipidemia, hyperleptinemia and increased urinary angiotensinogen level were observed during the experimental period. Blood pressure was elevated at ages 8 and 16 weeks, but that at 24 weeks was comparable to that in Sprague-Dawley (SD) rats. Heart rate was decreased from age 8 to 24 weeks. Insulin therapy induced good glycemic control and improvement of hyperlipidemia, but the blood pressure was not reduced. Blood pressure in female SDT-fa/fa rats was elevated temporarily. The blood pressure was not decreased by insulin treatment. SDT-fa/fa rat is a useful model to investigate the relation between diabetes mellitus and hypertension.


Subject(s)
Blood Pressure/physiology , Diabetes Mellitus/metabolism , Animals , Blood Glucose , Body Weight , Cholesterol/blood , Female , Insulin/blood , Leptin/blood , Rats , Rats, Sprague-Dawley , Triglycerides/blood
18.
Nutr Res ; 30(7): 483-91, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20797481

ABSTRACT

It is well known that rats and mice, when fed a high-fat diet, develop obesity associated with abnormal glycolipid metabolism. In this study, we investigated the effects of a high-fat diet on a diabetic rat model, Spontaneously Diabetic Torii (SDT), which develops diabetes due to decreased insulin production and secretion with age. We hypothesized that a high-fat diet would accelerate the induction of diabetes in this model. The SDT rats were divided into 2 groups, which were fed a high-fat diet or standard diet for 16 weeks. The group fed a high-fat diet developed obesity, hyperinsulinemia, and hyperlipidemia until 16 weeks of age. Before 16 weeks of age, hyperglycemia accompanied by hypoinsulinemia developed in the group on a standard diet, but serum glucose levels were comparable in both groups. After 16 weeks of age, the group on a standard diet showed an increase in serum glucose levels and a decrease in serum insulin levels. Unexpectedly, in the group on the high-fat diet, we observed a suppressed of the progression of hyperglycemia/hypoinsulinemia. Histopathological observation revealed more pancreatic beta cells in the group on the high-fat diet. This study suggests that feeding SDT rats a high-fat diet induces obesity, hyperinsulinemia, and hyperlipidemia, but not hyperglycemia, until 16 weeks of age. Thereafter, age-dependent progress of hyperglycemia and hypoinsulinemia was delayed by a high-fat diet. The hyperfunction of pancreatic beta cells induced by a high-fat diet before the onset of hyperglycemia appears to suppress development of hyperglycemia/hypoinsulinemia.


Subject(s)
Diabetes Mellitus, Type 2/prevention & control , Dietary Fats/administration & dosage , Adipose Tissue/pathology , Animals , Blood Glucose/analysis , Body Weight , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/physiopathology , Diet , Energy Intake , Glucagon-Like Peptide 1/blood , Glucose Tolerance Test , Insulin/blood , Male , Pancreas/pathology , Proteinuria/urine , Rats
19.
Exp Anim ; 59(4): 525-9, 2010.
Article in English | MEDLINE | ID: mdl-20661000

ABSTRACT

The Spontaneously Diabetic Torii-Lepr(fa) (SDT-fa/fa) rat, a new model of obese type 2 diabetes, shows obesity, hyperglycemia, and hyperlipidemia from 6 weeks of age. Diabetic complications such as nephropathy and cataract are observed with aging; however, blood pressure change with age has not previously been examined. In this study, blood pressure was periodically measured and the change was investigated. Blood pressure in male SDT-fa/fa rats was elevated at 8, 16, and 24 weeks of age, whereas the heart rate was not changed. In addition to hyperglycemia, hyperlipidemia, and proteinuria, hyperleptinemia and increased urine angiotensinogen were observed in SDT-fa/fa rats. Blood pressure and heart rate in the male original SDT (SDT-+/+) rat did not significantly change. In conclusion, the SDT-fa/fa rat is a promising model, showing significant hypertension with diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Disease Models, Animal , Hypertension/genetics , Angiotensinogen/urine , Animals , Blood Pressure/physiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Heart Rate/physiology , Hyperglycemia/genetics , Hyperglycemia/physiopathology , Hyperlipidemias/genetics , Hyperlipidemias/physiopathology , Hypertension/physiopathology , Leptin/blood , Male , Obesity/genetics , Obesity/metabolism , Obesity/physiopathology , Proteinuria/genetics , Proteinuria/physiopathology , Rats , Rats, Sprague-Dawley
20.
Exp Anim ; 59(1): 73-84, 2010.
Article in English | MEDLINE | ID: mdl-20224171

ABSTRACT

Obesity, hyperglycemia, hyperlipidemia, and diabetes-associated complications appear at younger ages (6-8 weeks) in the male Spontaneously Diabetic Torii-Lepr(fa) (SDT-fa/fa) rat than in the male original SDT (SDT-+/+) rat. However, the incidence and progression of diabetes mellitus and diabetic complications in the female SDT-fa/fa rat have not been reported in detail. In the present study, the pathophysiological features of the female SDT-fa/fa rat were examined, and compared with those of the female SDT-+/+ rat. Female SDT-fa/fa rats showed hyperphagia, obesity, hyperglycemia, and hyperlipidemia from 5 or 6 weeks of age, and hyperinsulinemia was observed from 5 to 12 weeks. Pathological changes pancreatic islets were observed from 8 weeks. Renal function parameters, such as urine volume and urinary protein, increased from 16 weeks, and pathological findings in the renal tubule, and cataracts were also observed from 16 weeks. Increases of visceral and subcutaneous fats were obvious during the observation period. In pair-feeding with SDT-+/+ rats, SDT-fa/fa rats showed improved hyperglycemia and hypertriglycemia, but hypercholesterolemia was not entirely improved during the study period. Female SDT-fa/fa rats showed diabetes mellitus and diabetes-associated complications at young ages, and fat accumulation was remarkable. Suppression of hyperphagia in SDT-fa/fa rats was effective at improving hyperglycemia and hypertriglycemia. In conclusion, the female SDT-fa/fa rat has the potential to become an important animal model of type 2 diabetes mellitus with obesity, especially for women, for which few models currently exist.


Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Rats, Inbred Strains , Adipose Tissue/pathology , Animals , Body Weight , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/veterinary , Disease Progression , Eating , Female , Islets of Langerhans/pathology , Organ Size , Rats
SELECTION OF CITATIONS
SEARCH DETAIL