Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Chem ; 29(2): 166-188, 2022.
Article in English | MEDLINE | ID: mdl-34525909

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are unusual cancers, which are developed in specialized cells in the gastrointestinal tract wall. Various strategies involving single-agents, combinations, and rapid complementary inhibitor cycling are now being used to control such tumors. Based on promising early clinical trial experience, certain novel KIT and PDGFRA tyrosine kinase inhibitors have shown advanced clinical development. Resistance to tyrosine kinase inhibitors has brought immense difficulties, with patients now requiring additional therapeutic options. This review describes and discusses the last five years (2016-2020) in developing novel c-KIT kinase inhibitors using virtual screening and docking approaches. Computational techniques can be used to complement experimental studies to identify new candidate molecules for therapeutic use. Molecular modeling strategies allow the analysis of the required characteristics that compounds must have to effectively bind c-KIT. Through such analyses, it is possible to both discover and design novel inhibitors against cancer-related proteins that play a critical role in tumor development (including mutant strains). Docking showed potential in the detection of the key residues responsible for ligand recognition and is very helpful to understand the interactions in the active site that can be used to develop new compounds/classes of anticancer drugs and help millions of cancer patients.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gastrointestinal Stromal Tumors/drug therapy , Humans , Molecular Docking Simulation , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/therapeutic use
2.
Environ Sci Pollut Res Int ; 26(5): 4393-4403, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30109685

ABSTRACT

The synthetic hormone sodium levothyroxine (LTX) is one of the most prescribed drugs in the world and the most effective in hypothyroidism treatment. The presence of LTX in the environment has become a matter of major concern due to the widespread use of this hormone and by the fact that it is only partially removed in conventional water and sewage treatment plants. However, information regarding the photochemical fate of this hormone in environmental or engineered systems is scarce in the literature. In this work, the sunlight-driven direct and indirect LTX degradation was investigated by determining the photolysis quantum yield, ΦLTX = 3.80 (± 0.02) × 10-5, as well as the second-order kinetic constants of the reactions with hydroxyl radicals, kLTX,•OH = 1.50 (± 0.01) × 1010 L mol-1 s-1 and singlet oxygen, kLTX,1O2 = 1.47 (± 0.66) × 108 L mol-1 s-1. Mathematical simulations indicate that LTX photodegradation is favored in shallow, nitrite-rich, and dissolved organic matter (DOM)-poor environments, with LTX half-life times varying from less than 10 days to about 80 days. LTX removals of 85 and 95% were achieved by UVC photolysis and UVC/H2O2 after 120 min, respectively. Three transformation products, triiodothyronine, diiodothyronine, and diiodotyrosine, were identified during LTX degradation by the UVC-based processes studied. The results herein regarding photo-induced kinetics coupled with environmental fate simulations may help evaluate LTX persistence and also the design of water and wastewater treatment processes.


Subject(s)
Photochemical Processes , Thyroxine/chemistry , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Diiodothyronines/chemistry , Diiodotyrosine/chemistry , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Kinetics , Models, Theoretical , Photolysis , Singlet Oxygen/chemistry , Sunlight , Triiodothyronine/chemistry , Wastewater/chemistry
3.
Curr Top Med Chem ; 18(18): 1522-1530, 2018.
Article in English | MEDLINE | ID: mdl-30360718

ABSTRACT

Dengue like any neglected tropical disease affects a large part of the world population. In this disease, the infection is caused by arboviruses transmitted by the A. aegypti and A. albopictus mosquito, in which its most severe manifestation is known as dengue hemorrhagic fever. The infected person presents symptoms characteristic of such as fever and rash. Among the ways of fighting dengue by bioactives is the inhibition of NS2B-NS3 protease, inhibition of protein E, and inhibition of sclerotization of the vector cuticle. The cuticle is indispensable for the survival of the mosquito that can be compromised through the inhibition of arylalkylamine N-acetyltransferase (aaNAT). In the studies shown, in silico tests were performed as molecular docking, functional density analysis, molecular orbitals energies with the analyses of the interactions between bioactives and the targets studied. However, in addition to discussing the fight against dengue virus infection through different routes, in this paper, some in silico results of 27 analogs of myricetin have been presented, which showed action on the cuticle sclerotization mechanism.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Molecular Docking Simulation , Antiviral Agents/chemistry , Humans , Microbial Sensitivity Tests
4.
Methods Mol Biol ; 1800: 327-345, 2018.
Article in English | MEDLINE | ID: mdl-29934901

ABSTRACT

Current therapeutic strategies entail identifying and characterizing a single protein receptor whose inhibition is likely to result in the successful treatment of a disease of interest, and testing experimentally large libraries of small molecule compounds "in vitro" and "in vivo" to identify promising inhibitors in model systems and determine if the findings are extensible to humans. This highly complex process is largely based on tests, errors, risk, time, and intensive costs. The virtual computational study of compounds simulates situations predicting possible drug linkages with multiple protein target atomic structures, taking into account the dynamic protein inhibitor, and can help identify inhibitors efficiently, particularly for complex drug-resistant diseases. Some discussions will relate to the potential benefits of this approach, using HIV-1 and Plasmodium falciparum infections as examples. Some authors have proposed a virtual drug discovery that not only identifies efficient inhibitors but also helps to minimize side effects and toxicity, thus increasing the likelihood of successful therapies. This chapter discusses concepts and research of bioactive multitargets related to toxicology.


Subject(s)
Computational Biology/methods , Drug Discovery/methods , Toxicology/methods , Humans , Quantitative Structure-Activity Relationship
5.
Curr Top Med Chem ; 18(9): 750-758, 2018.
Article in English | MEDLINE | ID: mdl-29807515

ABSTRACT

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, which has high levels of mortality worldwide and has already gained resistance to first- and second-line drugs. The study by new chemical entities with promising activities becomes paramount to broaden the therapeutic strategies in the cure of the patients affected with this disease. In this context, in this review we report the discovery of 3 classes of compounds that can simultaneously interact with more than one target of Mycobacterium tuberculosis.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Antitubercular Agents/chemistry , Microbial Sensitivity Tests , Molecular Structure
6.
Curr Top Med Chem ; 17(9): 1044-1079, 2017.
Article in English | MEDLINE | ID: mdl-27697048

ABSTRACT

Molecular Hybridization is an approach in rational drug design where new chemical entities are obtained by combining two or more pharmacophoric units from different bioactive compounds into a single molecule. Through this approach, medicinal chemists hope that the new hybrid derivative presents: better affinity and efficacy when compared to the parent drugs; a modified selectivity profile with improvement over pharmacokinetic and pharmacodynamic restrictions; dual or multiple modes of action; reduction of undesirable side effects; decreases in drug-drug interactions; reduced emergence or spread of drug resistance in microorganisms and protozoans; and lower cost. The approach has been successfully used by many research groups around the world and has had very promising results with diseases having multifactorial profiles, like Alzheimer´s, Parkinson´s disease, cancer, inflammation, and hypertension among others. The purpose of this paper is to conduct an updated review of molecular hybridization and multitarget profiling (a rational drug design approach), and its applications to the design and discovery of novel hybrid compounds with anti-inflammatory, antimicrobial, anticancer and antiprotozoal (leishmaniasis, malaria, and schistosomiasis) activities over the last six years.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Drug Design , Humans , Ligands , Molecular Structure
7.
Curr Top Med Chem ; 16(23): 2525-31, 2016.
Article in English | MEDLINE | ID: mdl-27086786

ABSTRACT

The use of natural products for the treatment of disease is one of the oldest cultures exists. Currently, the research of new drugs using natural products shows a poorly explored biodiversity and a great interest of marketing. The enzymatic inhibition by some natural products is investigated among these is the inhibition of hyaluronidase and the consequent reduction of the degradation of hyaluronic acid. So there is a reduction of inflammation and angiogenesis. This study reports the main natural species studied in inhibiting human hyaluronidase that can be the subject of future research for new drugs.


Subject(s)
Enzyme Inhibitors/pharmacology , Hyaluronoglucosaminidase/antagonists & inhibitors , Biological Products/pharmacology , Drug Discovery , Humans , Plants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...