Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(29): 13644-13652, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38985450

ABSTRACT

Herein, we report a new photofunctional Pb-S-based coordination polymer (CP) with the formula [Pb(ATAT)(OAc)]n (ATAT = 3-amino-5-mercapto-1,2,4-triazole, OAc = acetate, CP1). Apart from its photoactive one-dimensional (1D) (-Pb-S-)n chain, CP1 is also composed of another 1D (-Pb-O-)n chain that originates from the coordination with acetate. The coordinated acetate can be exchanged with water (H2O) or dimethyl sulfoxide (DMSO), leading to the formation of a CP1-H2O or CP1-DMSO structure that exhibits a distinct change in optical properties, including a white-to-yellow color change. The structural transformation of CP1 to CP1-H2O and CP1-DMSO, and its subsequent recovery to the original CP1 structure could be controlled by the presence or absence of acetic acid vapor; the transformation was completely reversible. CP1 absorbed light with wavelengths shorter than 390 nm, with an estimated bandgap of 3.18 eV. Density functional theory calculations indicated that the valence band of CP1 is mainly formed by N and S orbitals originating from the ATAT unit, whereas the conduction band is composed of the Pb orbitals. Even without any modification, such as the incorporation of a molecular catalyst, CP1 reduced CO2 into formate under UV light with >99% selectivity.

2.
Chem Sci ; 15(28): 11021-11028, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39027311

ABSTRACT

Controlling the rotation of carbon-carbon bonds, which is ubiquitous in organic molecules, to create functionality has been a subject of interest for a long time. In this context, it would be interesting to explore whether cooperative and collective rotation could occur if dipolar molecular rotors were aligned close together while leaving adequate space for rotation. However, it is difficult to realize such structures as bulk molecular assemblies, since molecules generally tend to assemble into the closest packing structure to maximize intermolecular forces. To tackle this question, we examined an approach using a supramolecular scaffold composed of a tripodal triptycene, which has been demonstrated to strongly promote the assembly of various molecular and polymer units into regular "2D hexagonal packing + 1D layer" structures. We found that a molecule (1) consisting of a dipolar 1,2-difluorobenzene rotor sandwiched by two 10-ethynyl-1,8,13-tridodecyloxy triptycenes, successfully self-assembles into the desired structure, where the dipolar rotor units align two-dimensionally at a close interval of approximately 0.8 nm while having a degree of freedom for rotational motion. Here we describe the self-assembly behavior of 1 in comparison with the general trend in molecular self-assembly, as well as the motility of the two-dimensionally aligned molecular rotors investigated using solid-state 19F-MAS NMR spectroscopy.

3.
ChemSusChem ; 17(12): e202400408, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38622065

ABSTRACT

The development of a highly active photocatalyst for visible-light water splitting requires a high-quality semiconductor material and a cocatalyst, which promote both the migration of photogenerated charge carriers and surface redox reactions. In this work, a cocatalyst was loaded onto an oxyfluoride photocatalyst, Pb2Ti2O5.4F1.2, to improve the water oxidation activity. Among the metal oxides examined as cocatalysts, RuO2 was found to be the most suitable, and the O2 evolution activity depended on the preparation conditions for Ru/Pb2Ti2O5.4F1.2. The highest activity was obtained with RuCl3-impregnated Pb2Ti2O5.4F1.2 heated under a flow of H2 at 523 K. The H2-treated Ru/Pb2Ti2O5.4F1.2 showed an O2 evolution rate an order of magnitude higher than those for the analogues without the H2 treatment (e. g., RuO2/Pb2Ti2O5.4F1.2). Physicochemical analyses by X-ray absorption fine-structure spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and time-resolved microwave conductivity measurements indicated that the optimized photocatalyst contained partially reduced RuO2 species with a particle size of ~5 nm. These partially reduced species effectively trapped the photogenerated charge carriers and promoted the oxidation of water into O2. The optimized Ru/Pb2Ti2O5.4F1.2 could function as an O2-evolving photocatalyst in Z-scheme overall water splitting, in combination with an Ru-loaded, Rh-doped SrTiO3 photocatalyst.

4.
Angew Chem Int Ed Engl ; 63(24): e202404700, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38577718

ABSTRACT

The molecular conformation, crystalline morphology, and properties of photochromic organic crystals can be controlled through photoirradiation, making them promising candidates for functional organic materials. However, photochromic porous molecular crystals with a networked framework structure are rare due to the difficulty in maintaining space that allows for photo-induced molecular motion in the crystalline state. This study describes a photo-responsive single crystal based on hydrogen-bonded (H-bonded) network of dihydrodimethylbenzo[e]pyrene derivative 4BDHP. A crystal composed of H-bonded undulate layers, 4BDHP-2, underwent photo-isomerization in the crystalline state due to loose stacking of the layers. Particularly, enantio-pure crystal (S,S)-4BDHP-2 allowed to reveal the structure of the photoisomerized crystal, in which the closed form (4BDHP) and open form (4CPD) were arranged alternately with keeping crystalline periodicity, although side reactions were also implied. The present proof-of-concept system of a photochromic framework that retains crystalline periodicity after photo-isomerization may provide new light-driven porous functional materials.

5.
Chem Commun (Camb) ; 60(27): 3653-3656, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38488046

ABSTRACT

Novel water-dispersible donor-acceptor-donor π-conjugated bolaamphiphiles, having dibenzophenazine as the acceptor and heteroatom-bridged amphiphilic diarylamines as the donors, have been developed. The materials displayed a distinct photoluminescence color change in response to humidity in a poly(vinylalcohol) matrix.

6.
Chem Commun (Camb) ; 60(28): 3862, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38526752

ABSTRACT

Correction for 'Water-dispersible donor-acceptor-donor π-conjugated bolaamphiphiles enabling a humidity-responsive luminescence color change' by Tomoya Enjou et al., Chem. Commun., 2024, https://doi.org/10.1039/d3cc05749f.

7.
Chem Commun (Camb) ; 60(7): 889-892, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38165640

ABSTRACT

Development of two-dimensional materials and exploration of their functionalities are significant challenges due to their potential. In this study, we successfully fabricated a supramolecular nanosheet composed of amphiphilic Rose Bengal dyes in an aqueous medium. Furthermore, we elucidated a distinct change in the photosensitisation mechanism induced by nanosheet formation.

8.
JACS Au ; 3(11): 3194-3203, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38034953

ABSTRACT

Solution-processed inorganic solar cells with less toxic and earth-abundant elements are emerging as viable alternatives to high-performance lead-halide perovskite solar cells. However, the wide range of elements and process parameters impede the rapid exploration of vast chemical spaces. Here, we developed an automated robot-embedded measurement system that performs photoabsorption spectroscopy, optical microscopy, and white-light flash time-resolved microwave conductivity (TRMC). We tested 576 films of quaternary element-blended wide-bandgap Cs-Bi-Sb-I semiconductors with various compositions, organic salt additives (MACl, FACl, MAI, and FAI, where MA and FA represent methylammonium and formamidinium, respectively), and thermal annealing temperatures. Among them, we found that the maximum power conversion efficiency (PCE) was 2.36%, which is significantly higher than the PCE of 0.68% for a reference film without an additive. Machine learning (ML) and statistical analyses revealed significant features and their relationships with TRMC transients, thereby demonstrating the advantages of combining ML and automated experiments for the high-throughput exploration of photovoltaic materials.

9.
J Am Chem Soc ; 145(21): 11553-11565, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37202849

ABSTRACT

Expanded carbohelicenes with structures fused to 15- and 17-benzene were successfully synthesized. Establishing a new synthetic strategy is crucial to realize the development of longer expanded [2,1][n]helicenes with a kekulene-like projection drawing structure. This article describes the sequential integration of the π-elongating Wittig reaction of functionalized phenanthrene units and ring-fusing Yamamoto coupling for the synthesis of [2,1][15]helicenes and [2,1][17]helicenes. X-ray crystallographic structures, photophysical properties, and density functional theory (DFT) calculations revealed the unique characteristics of the synthesized expanded helicenes. Furthermore, because of the high enantiomerization barrier derived from a wide-range intrahelix π-π interaction, the optical resolution of [2,1][17]helicene was successfully achieved, and chiroptical properties such as circular dichroism and circularly polarized luminescence were elucidated for the first time as enantiomers of pristine [2,1][n]helicene core.

10.
RSC Adv ; 13(22): 15107-15113, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37207099

ABSTRACT

The bulk heterojunction structures of organic photovoltaics (OPVs) have been overlooked in their machine learning (ML) approach despite their presumably significant impact on power conversion efficiency (PCE). In this study, we examined the use of atomic force microscopy (AFM) images to construct an ML model for predicting the PCE of polymer : non-fullerene molecular acceptor OPVs. We manually collected experimentally observed AFM images from the literature, applied data curing and performed image analyses (fast Fourier transform, FFT; gray-level co-occurrence matrix, GLCM; histogram analysis, HA) and ML linear regression. The accuracy of the model did not considerably improve even by including AFM data in addition to the chemical structure fingerprints, material properties and process parameters. However, we found that a specific spatial wavelength of FFT (40-65 nm) significantly affects PCE. The GLCM and HA methods, such as homogeneity, correlation and skewness expand the scope of image analysis and artificial intelligence in materials science research fields.

11.
Chemistry ; 29(43): e202301466, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37194616

ABSTRACT

1,1',10,10'-Biphenothiazine and its S,S,S',S'-tetroxide are diaza[5]helicenes with N-N linkages. Kinetic experiments on racemization together with DFT calculations revealed that they undergo inversion through the N-N bond breaking pathway rather than the general conformational pathway. In these diaza[5]helicenes with this inversion mechanism, the reduction of electronic repulsion in the N-N bond by modification of S to SO2 at the outer position of the helix led to a significantly higher inversion barrier, 35.3 kcal/mol, compared to [5]helicene. 1,1',10,10'-Biphenothiazine S,S,S',S'-tetroxide was highly resistant to acid-mediated N-N bond breaking and racemization under acidic conditions.

12.
Chem Sci ; 14(9): 2431-2440, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36873840

ABSTRACT

Due to its unique physical and chemical properties, polydimethylsiloxane (PDMS) is widely used in many applications, in which covalent cross-linking is commonly used to cure the fluidic polymer. The formation of a non-covalent network achieved through the incorporation of terminal groups that exhibit strong intermolecular interactions has also been reported to improve the mechanical properties of PDMS. Through the design of a terminal group capable of two-dimensional (2D) assembly, rather than the generally used multiple hydrogen bonding motifs, we have recently demonstrated an approach for inducing long-range structural ordering of PDMS, resulting in a dramatic change in the polymer from a fluid to a viscous solid. Here we present an even more surprising terminal-group effect: simply replacing a hydrogen with a methoxy group leads to extraordinary enhancement of the mechanical properties, giving rise to a thermoplastic PDMS material without covalent cross-linking. This finding would update the general notion that less polar and smaller terminal groups barely affect polymer properties. Based on a detailed study of the thermal, structural, morphological and rheological properties of the terminal-functionalized PDMS, we revealed that 2D assembly of the terminal groups results in networks of PDMS chains, which are arranged as domains with long-range one-dimensional (1D) periodic order, thereby increasing the storage modulus of the PDMS to exceed its loss modulus. Upon heating, the 1D periodic order is lost at around 120 °C, while the 2D assembly is maintained up to ∼160 °C. The 2D and 1D structures are recovered in sequence upon cooling. Due to the thermally reversible, stepwise structural disruption/formation as well as the lack of covalent cross-linking, the terminal-functionalized PDMS shows thermoplastic behavior and self-healing properties. The terminal group presented herein, which can form a 'plane', might also drive other polymers to assemble into a periodically ordered network structure, thereby allowing for significant modulation of their mechanical properties.

13.
ACS Appl Mater Interfaces ; 15(5): 6708-6715, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36696169

ABSTRACT

Surface passivation is key to the power conversion efficiency (PCE) of organic-inorganic lead halide perovskite solar cells (PSCs). Herein, we report a novel molecular concept of a C2-symmetric syn-type bifacial donor-π-donor (D-π-D) passivation molecule (a racemic mixture of enantiomers) with hydrophobic phenyls and hydrophilic tetraethylene glycol-substituted phenyls on each face of the indeno-[1,2-b]fluorene π-core. In addition to this bifacial amphiphilic π-core unit, triphenylamine, a well-established passivation donor, effectively passivated the PSC surface, facilitated hole transfer, and increased the maximum PCE from 18.43 to 19.74%. Another notable effect is the removal of remnant PbI2 and the change in the perovskite orientation on the surface by the syn-type molecule. In contrast, the anti-type isomer degraded its long-term stability. We characterized the electrostatic and electronic properties of these molecules and highlighted the advantage of molecular strategy based on a bifacial structure and its stereochemistry.

14.
J Am Chem Soc ; 145(2): 1031-1039, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36608693

ABSTRACT

We report here a nanosized "buckytrap", 1, constructed from two bis-zinc(II) expanded-TTF (exTTF) porphyrin subunits. Two forms, 1a and 1b, differing in the axial ligands, H2O vs tetrahydrofuran (THF), were isolated and characterized. Discrete host-guest inclusion complexes are formed upon treatment with fullerenes as inferred from a single-crystal X-ray structural analyses of 1a with C70. The fullerene is found to be encapsulated within the inner pseudohexagonal cavity of 1a. In contrast, the corresponding free-base derivative (2) was found to form infinite ball-and-socket type supramolecular organic frameworks (3D-SOFs) with fullerenes, (2•C60)n or (2•C70)n. This difference is ascribed to the fact that in 1a and 1b the axial positions are blocked by a H2O or THF ligand. Emission spectroscopic studies supported a 1:1 host-guest binding stoichiometry, allowing association constants of (2.0 ± 0.5) × 104 M-1 and (4.3 ± 0.9) × 104 M-1 to be calculated for C60 and C70, respectively. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) studies of solid films of the Zn-complex 1a revealed that the intrinsic charge carrier transport, i.e., pseudo-photoconductivity (ϕ∑µ), increases upon fullerene inclusion (e.g., ϕ∑µ = 1.53 × 10-4 cm2 V-1 s-1 for C60⊂(1a)2 and ϕ∑µ = 1.45 × 10-4 cm2 V-1 s-1 for C70⊂(1a)2 vs ϕ∑µ = 2.49 × 10-5 cm2 V-1 s-1 for 1a) at 298 K. These findings provide support for the notion that controlling the nature of self-assembly supramolecular constructs formed from exTTF-porphyrin dimers through metalation or choice of fullerene can be used to regulate key functional features, including photoconductivity.


Subject(s)
Fullerenes , Porphyrins , Fullerenes/chemistry , Porphyrins/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
15.
Angew Chem Int Ed Engl ; 62(8): e202217704, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36578175

ABSTRACT

We newly synthesized a series of homo- and hetero-tetracene (Tc) oligomers to propose a molecular design strategy for the efficient exciton transport in linear oligomers by promoting correlated triplet pair (TT) dissociation and controlling sequential exciton trapping process of individual doubled triplet excitons (T+T) by intramolecular singlet fission. First, entropic gain effects on the number of Tc units are examined by comparing Tc-homo-oligomers [(Tc)n : n=2, 4, 6]. Then, a comparison of (Tc)n and Tc-hetero-oligomer [TcF3 -(Tc)4 -TcF3 ] reveals the vibronic coupling effect for entropic gain. Observed entropic effects on the T+T formation indicated that the exciton migration is rationalized by number of possible TT states increased both by increasing the number of Tc units and by the vibronic levels at the terminal TcF3 units. Finally, we successfully observed high-yield exciton trapping process (trapped triplet yield: ΦTrT =176 %).

16.
Chemistry ; 29(14): e202202702, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36520052

ABSTRACT

A new class of diamino-substituted π-extended phenazine compound was synthesized, and its photophysical properties were investigated. The U-shaped diaminophenazine displayed photoluminescence in solution with moderate quantum yield. The diamino aromatic compound was found applicable to the poly-condensation with formaldehyde to form Tröger's base ladder polymer. The obtained microporous ladder polymer features high CO2 adsorption selectivity against N2 , most likely due to the presence of basic nitrogen atoms in the phenazine rings.

17.
Front Chem ; 10: 1025977, 2022.
Article in English | MEDLINE | ID: mdl-36386001

ABSTRACT

Dynamic mechanical chirality of [2]rotaxane consisting of a C s symmetric wheel and a C 2v symmetric axle is discussed via the synthesis, enantiomer separation, racemization, and chiral-prochiral interconversion. This [2]rotaxane is achiral and/or prochiral when its wheel locates at the center of the axle, but becomes chiral when the wheel moves from the center of the axle. These were proved by the experiments on the enantiomer separation and racemization. The racemization energy of the isolated single enantiomers was controlled by the bulkiness of the central substituents on the axle. Furthermore, the chiral-prochiral interconversion was achieved by relative positional control of the components. The present systematic studies will provide new insight into mechanically chiral interlocked compounds as well as the utility as dynamic chiral sources.

18.
J Org Chem ; 87(5): 2508-2519, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35179377

ABSTRACT

Bowl-shaped aromatic molecules, buckybowls, are attractive molecules because of the unique properties derived from their curved-π scaffolds. Doping heteroatoms into buckybowl frameworks is a powerful method to change their structural and electronical properties. Herein, we report the synthesis of C70 fragment buckybowl, homosumanene, and heterahomosumanenes having a lactone moiety and a lactam moiety via three ring-expansion reactions using sumanenone as a common intermediate. X-ray diffraction analysis of the single crystals reveals their columnar packing structure with a shallow bowl-depth. The lactam moiety is readily derivatized to give azahomosumanene derivatives, nitrogen-doped analogues of homosumanene possessing a pyridine ring at the peripheral carbon. The synthetic application of the α-phenyl azahomosumanene as a cyclometalating ligand with platinum also revealed its utility for preparing a metal complex bearing a buckybowl ligand.

19.
ACS Nano ; 15(7): 11168-11179, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34125529

ABSTRACT

Molecules with tripodal anchoring to substrates represent a versatile platform for the fabrication of robust self-assembled monolayers (SAMs), complementing the conventional monopodal approach. In this context, we studied the adsorption of 1,8,13-tricarboxytriptycene (Trip-CA) on Ag(111), mimicked by a bilayer of silver atoms underpotentially deposited on Au. While tripodal SAMs frequently suffer from poor structural quality and inhomogeneous bonding configurations, the triptycene scaffold featuring three carboxylic acid anchoring groups yields highly crystalline SAM structures. A pronounced polymorphism is observed, with the formation of distinctly different structures depending on preparation conditions. Besides hexagonal molecular arrangements, the occurrence of a honeycomb structure is particularly intriguing as such an open structure is unusual for SAMs consisting of upright-standing molecules. Advanced spectroscopic tools reveal an equivalent bonding of all carboxylic acid anchoring groups. Notably, density functional theory calculations predict a chiral arrangement of the molecules in the honeycomb network, which, surprisingly, is not apparent in experimental scanning tunneling microscopy (STM) images. This seeming discrepancy between theory and experiment can be resolved by considering the details of the actual electronic structure of the adsorbate layer. The presented results represent an exemplary showcase for the intricacy of interpreting STM images of complex molecular films. They are also further evidence for the potential of triptycenes as basic building blocks for generating well-defined layers with unusual structural motifs.

20.
ACS Appl Mater Interfaces ; 13(21): 24824-24832, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34008952

ABSTRACT

Organic-inorganic lead halide perovskite solar cells (PSCs) are highly efficient, flexible, lightweight, and even tolerant to radiation, such as protons, electron beams (EB), and γ-rays, all of which makes them plausible candidates for use in space satellites and spacecrafts. However, the mechanisms of radiation damage of each component of PSC [an organic hole transport material (HTM), a perovskite layer, and an electron transport material (ETM)] are not yet fully understood. Herein, we investigated the EB irradiation effect (100 keV, up to 2.5 × 1015 cm-2) on binary-mixed A site cations and halide perovskite (MA0.13FA0.87PbI2.61Br0.39, MA:methylammonium cation and FA:formaminidium cation), a molecular HTM of doped SpiroOMeTAD, and an inorganic ETM of mesoporous TiO2. Despite the decreased power conversion efficiency of PSCs upon EB exposure, the photoconductivities of the perovskite, HTM, and ETM layers remained intact. In contrast, significant dedoping of HTM was observed, as confirmed by steady-state conductivity, photoabsorption, and X-ray photoelectron spectroscopy measurements. Notably, this damage could be healed by exposure to short-wavelength light, leading to a partial recovery of the PSC efficiency. Our work exemplifies the robustness of perovskite against EB and the degradation mechanism of the overall PSC performance.

SELECTION OF CITATIONS
SEARCH DETAIL