Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Chem Biol Drug Des ; 103(5): e14553, 2024 May.
Article in English | MEDLINE | ID: mdl-38789394

ABSTRACT

Evolutionary potential of viruses can result in outbreaks of well-known viruses and emergence of novel ones. Pharmacological methods of intervening the reproduction of various less popular, but not less important viruses are not available, as well as the spectrum of antiviral activity for most known compounds. In the framework of chemical biology paradigm, characterization of antiviral activity spectrum of new compounds allows to extend the antiviral chemical space and provides new important structure-activity relationships for data-driven drug discovery. Here we present a primary assessment of antiviral activity of spiro-annulated derivatives of seven-membered heterocycles, oxepane and azepane, in phenotypic assays against viruses with different genomes, virion structures, and genome realization schemes: orthoflavivirus (tick-borne encephalitis virus, TBEV), enteroviruses (poliovirus, enterovirus A71, echovirus 30), adenovirus (human adenovirus C5), hantavirus (Puumala virus). Hit compounds inhibited reproduction of adenovirus C5, the only DNA virus in the studied set, in the yield reduction assay, and did not inhibit reproduction of RNA viruses.


Subject(s)
Antiviral Agents , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship , Oxepins/chemistry , Oxepins/pharmacology , Animals , Virus Replication/drug effects , Phenotype
2.
Emerg Microbes Infect ; 13(1): 2313849, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38465849

ABSTRACT

Tick-borne encephalitis virus (TBEV) causes a severe disease, tick-borne encephalitis (TBE), that has a substantial epidemiological importance for Northern Eurasia. Between 10,000 and 15,000 TBE cases are registered annually despite the availability of effective formaldehyde-inactivated full-virion vaccines due to insufficient vaccination coverage, as well as sporadic cases of vaccine breakthrough. The development of improved vaccines would benefit from the atomic resolution structure of the antigen. Here we report the refined single-particle cryo-electron microscopy (cryo-EM) structure of the inactivated mature TBEV vaccine strain Sofjin-Chumakov (Far-Eastern subtype) at a resolution of 3.0 Å. The increase of the resolution with respect to the previously published structures of TBEV strains Hypr and Kuutsalo-14 (European subtype) was reached due to improvement of the virus sample quality achieved by the optimized preparation methods. All the surface epitopes of TBEV were structurally conserved in the inactivated virions. ELISA studies with monoclonal antibodies supported the hypothesis of TBEV protein shell cross-linking upon inactivation with formaldehyde.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Humans , Antibodies, Viral , Cryoelectron Microscopy , Vaccines, Inactivated , Formaldehyde
3.
Viruses ; 16(2)2024 02 11.
Article in English | MEDLINE | ID: mdl-38400055

ABSTRACT

The EMCV L and 2A proteins are virulence factors that counteract host cell defense mechanisms. Both L and 2A exhibit antiapoptotic properties, but the available data were obtained in different cell lines and under incomparable conditions. This study is aimed at checking the role of these proteins in the choice of cell death type in three different cell lines using three mutants of EMCV lacking functional L, 2A, and both proteins together. We have found that both L and 2A are non-essential for viral replication in HeLa, BHK, and RD cell lines, as evidenced by the viability of the virus in the absence of both functional proteins. L-deficient infection led to the apoptotic death of HeLa and RD cells, and the necrotic death of BHK cells. 2A-deficient infection induced apoptosis in BHK and RD cells. Infection of HeLa cells with the 2A-deficient mutant was finalized with exclusive caspase-dependent death with membrane permeabilization, morphologically similar to pyroptosis. We also demonstrated that inactivation of both proteins, along with caspase inhibition, delayed cell death progression. The results obtained demonstrate that proteins L and 2A play a critical role in choosing the path of cell death during infection, but the result of their influence depends on the properties of the host cells.


Subject(s)
Encephalomyocarditis virus , Viral Proteins , Humans , HeLa Cells , Viral Proteins/genetics , Viral Proteins/metabolism , Encephalomyocarditis virus/physiology , Apoptosis , Caspases/genetics , Caspases/metabolism
4.
Acta Crystallogr D Struct Biol ; 80(Pt 1): 44-59, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38164954

ABSTRACT

X-ray imaging of virus particles at the European XFEL could eventually allow their complete structures to be solved, potentially approaching the resolution of other structural virology methods. To achieve this ambitious goal with today's technologies, about 1 ml of purified virus suspension containing at least 1012 particles per millilitre is required. Such large amounts of concentrated suspension have never before been obtained for enveloped viruses. Tick-borne encephalitis virus (TBEV) represents an attractive model system for the development of enveloped virus purification and concentration protocols, given the availability of large amounts of inactivated virus material provided by vaccine-manufacturing facilities. Here, the development of a TBEV vaccine purification and concentration scheme is presented combined with a quality-control protocol that allows substantial amounts of highly concentrated non-aggregated suspension to be obtained. Preliminary single-particle imaging experiments were performed for this sample at the European XFEL, showing distinct diffraction patterns.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Vaccines , Humans , Encephalitis, Tick-Borne/prevention & control
5.
Eur J Immunol ; 54(3): e2350664, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38088236

ABSTRACT

COVID-19 is a systemic inflammatory disease initiated by SARS-CoV-2 virus infection. Multiple vaccines against the Wuhan variant of SARS-CoV-2 have been developed including a whole virion beta-propiolactone-inactivated vaccine based on the B.1.1 strain (CoviVac). Since most of the population has been vaccinated by targeting the original or early variants of SARS-CoV-2, the emergence of novel mutant variants raises concern over possible evasion of vaccine-induced immune responses. Here, we report on the mechanism of protection by CoviVac, a whole virion-based vaccine, against the Omicron variant. CoviVac-immunized K18-hACE2 Tg mice were protected against both prototype B.1.1 and BA.1-like (Omicron) variants. Subsequently, vaccinated K18-hACE2 Tg mice rapidly cleared the infection via cross-reactive T-cell responses and cross-reactive, non-neutralizing antibodies recognizing the Omicron variant Spike protein. Thus, our data indicate that efficient protection from SARS-CoV-2 variants can be achieved by the orchestrated action of cross-reactive T cells and non-neutralizing antibodies.


Subject(s)
COVID-19 , Melphalan , SARS-CoV-2 , gamma-Globulins , Animals , Humans , Mice , Vaccines, Inactivated , Antibody Formation , COVID-19/prevention & control , T-Lymphocytes , Virion , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , Antibodies, Viral
6.
Emerg Microbes Infect ; 13(1): 2290833, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38073510

ABSTRACT

The main approach to preventing tick-borne encephalitis (TBE) is vaccination. Formaldehyde-inactivated TBE vaccines have a proven record of safety and efficiency but have never been characterized structurally with atomic resolution. We report a cryoelectron microscopy (cryo-EM) structure of the formaldehyde-inactivated TBE virus (TBEV) of Sofjin-Chumakov strain representing the Far-Eastern subtype. A 3.8 Å resolution reconstruction reveals the structural integrity of the envelope E proteins, specifically the E protein ectodomains. The comparative study shows a high structural similarity to the previously published structures of the TBEV European subtype strains Hypr and Kuutsalo-14. A fraction of inactivated virions exhibits asymmetric features including the deformations of the membrane profile. We propose that the heterogeneity is caused by inactivation and perform a local variability analysis on the small parts of the envelope protein shell to reveal membrane curvature features possibly induced by the inactivation. The results of this study will have implications for the design of novel vaccines against diseases caused by flaviviruses.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Viral Vaccines , Humans , Encephalitis Viruses, Tick-Borne/genetics , Vaccines, Inactivated , Cryoelectron Microscopy , Formaldehyde
7.
Bioorg Med Chem ; 98: 117552, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38128296

ABSTRACT

Decoration of nucleoside analogues with lipophilic groups often leads to compounds with improved antiviral activity. For example, N6-benzyladenosine derivatives containing elongated lipophilic substituents in the benzyl core efficiently inhibit reproduction of tick-borne encephalitis virus (TBEV), while N6-benzyladenosine itself potently inhibits reproduction of human enterovirus A71 (EV-A71). We have extended a series of N6-benzyladenosine analogues using effective synthetic methods of CC bond formation based on Pd-catalyzed cross-coupling reactions (Sonogashira and Suzuki) in order to study the influence of bulky lipophilic substituents in the N6 position of adenosine on the antiviral activity against flaviviruses, such as TBEV, yellow fever virus (YFV) and West Nile virus (WNV), as well as a panel of enteroviruses including EV-A71, Echovirus 30 (E30), and poliovirus type 2 (PV2). Reproduction of tested flaviviruses appeared to be inhibited by the micromolar concentrations of the compounds, while cytotoxicity in most cases was beyond the detection limit. Time-of-addition studies demonstrated that the hit compounds inhibited the stage of viral RNA synthesis, but not the stages of the viral entry or protein translation. As a result, several new promising antiflaviviral leads have been identified. On the other hand, none of the synthesized compounds inhibited enterovirus reproduction, indicating a possibility of involvement of flavivirus-specific pathways in their mechanism of action.


Subject(s)
Adenosine/analogs & derivatives , Encephalitis Viruses, Tick-Borne , West Nile virus , Humans , Palladium , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
8.
Vaccines (Basel) ; 11(12)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38140159

ABSTRACT

Tick-borne encephalitis virus (TBEV) and Powassan virus (POWV) are neurotropic tick-borne orthoflaviviruses. They cause mostly asymptomatic infections in hosts, but severe forms with CNS involvement can occur. Studying the early stages of viral infections in humans is challenging, and appropriate animal models are essential for understanding the factors determining the disease severity and for developing emergency prophylaxis and treatment options. In this work, we assessed the model of the early stages of TBEV and POWV mono- and co-infections in Macaca fascicularis. Serological, biochemical, and virological parameters were investigated to describe the infection, including its impact on animal behavior. Viremia, neutralizing antibody dynamics, and viral load in organs were chosen as the main parameters distinguishing early-stage orthoflavivirus infection. Levels of IFNα, monocyte count, and cognitive test scores were proposed as additional informative indicators. An assessment of a tick-borne encephalitis vaccine using this model showed that it provided partial protection against POWV infection in Macaca fascicularis without signs of antibody-dependent enhancement of infection.

9.
Viruses ; 15(10)2023 09 22.
Article in English | MEDLINE | ID: mdl-37896752

ABSTRACT

Oncolytic viruses offer a promising approach to tumor treatment. These viruses not only have a direct lytic effect on tumor cells but can also modify the tumor microenvironment and activate antitumor immunity. Due to their high pathogenicity, flaviviruses have often been overlooked as potential antitumor agents. However, with recent advancements in genetic engineering techniques, an extensive history with vaccine strains, and the development of new attenuated vaccine strains, there has been a renewed interest in the Flavivirus genus. Flaviviruses can be genetically modified to express transgenes at acceptable levels, and the stability of such constructs has been greatly improving over the years. The key advantages of flaviviruses include their reproduction cycle occurring entirely within the cytoplasm (avoiding genome integration) and their ability to cross the blood-brain barrier, facilitating the systemic delivery of oncolytics against brain tumors. So far, the direct lytic effects and immunomodulatory activities of many flaviviruses have been widely studied in experimental animal models across various types of tumors. In this review, we delve into the findings of these studies and contemplate the promising potential of flaviviruses in oncolytic therapies.


Subject(s)
Brain Neoplasms , Flavivirus , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Flavivirus/genetics , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Brain Neoplasms/therapy , Genetic Engineering , Tumor Microenvironment
10.
Viruses ; 15(9)2023 08 29.
Article in English | MEDLINE | ID: mdl-37766235

ABSTRACT

We present the results of a randomized, double-blind, placebo-controlled, multi-center clinical trial phase I/II of the tolerability, safety, and immunogenicity of the inactivated whole virion concentrated purified coronavirus vaccine CoviVac in volunteers aged 18-60 and open multi-center comparative phase IIb clinical trial in volunteers aged 60 years and older. The safety of the vaccine was assessed in 400 volunteers in the 18-60 age cohort who received two doses of the vaccine (n = 300) or placebo (n = 100) and in 200 volunteers in 60+ age cohort all of whom received three doses of the vaccine. The studied vaccine has shown good tolerability and safety. No deaths, serious adverse events (AEs), or other significant AEs related to vaccination have been detected. The most common AE in vaccinated participants was pain at the injection site (p < 0.05). Immunogenicity assessment in stage 3 of Phase II was performed on 167 volunteers (122 vaccinated and 45 in Placebo Group) separately for the participants who were anti-SARS-CoV-2 nAB negative (69/122 in Vaccine Group and 28/45 in Placebo Group) or positive (53/122 in Vaccine Group and 17/45 in Placebo Group) at screening. On Day 42 after the 1st vaccination, the seroconversion rate in participants who were seronegative at screening was 86.9%, with the average geometric mean neutralizing antibody (nAB) titer of 1:20. A statistically significant (p < 0.05) increase in IFN-γ production by peptide-stimulated T-cells was observed at Days 14 and 21 after the 1st vaccination. In participants who were seropositive at screening but had nAB titers below 1:256, the rate of fourfold increase in nAB levels was 85.2%, while in the participants with nAB titers > 1:256, the rate of fourfold increase in nAB levels was below 45%; the participants who were seropositive at screening of the 2nd vaccination did not lead to a significant increase in nAB titers. In conclusion, inactivated vaccine CoviVac has shown good tolerability and safety, with over 85% NT seroconversion rates after complete vaccination course in participants who were seronegative at screening in both age groups: 18-60 and 60+. In participants who were seropositive at screening and had nAB titers below 1:256, a single vaccination led to a fourfold increase in nAB levels in 85.2% of cases. These findings indicate that CoviVac can be successfully used both for primary vaccination in a two-dose regimen and for booster vaccination as a single dose in individuals with reduced neutralizing antibody levels.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Middle Aged , Aged , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Vaccines, Attenuated , Antibodies, Neutralizing , Antibodies, Viral
11.
Viruses ; 15(7)2023 07 12.
Article in English | MEDLINE | ID: mdl-37515224

ABSTRACT

During 2000-2022, a total of 69 of Russia's 85 administrative regions reported 164,580 hemorrhagic fever with renal syndrome (HFRS) cases, with an annual average rate of 4.9 cases/100,000 population (105 popul.). European Russia reported 162,045 (98.5%) cases in 53/60 regions with 9.7 cases/105 popul. Asian Russia reported 2535 (1.5%) cases in 16/25 regions with 0.6 cases/105 popul. In the same period, Russia reported 668 (0.4%) fatal HFRS cases, and 4030 (2.4%) cases among children under the age of 14 years. Most HFRS cases occurred during autumn and winter. The incidence among rural residents was 6.7 per 105 popul., higher than the urban 4.4 per 105 popul.; however, among HFRS patients, rural and urban residents account for 35% and 65%, respectively. Six hantaviruses, causing HFRS of different clinical severity, were recognized as pathogens: Hantaan (HTNV) and Amur (AMUV) of Orthohantavirus hantanense species, Seoul (SEOV) of Orthohantavirus seoulense species, Puumala (PUUV) of Orthohantavirus puumalaense species, and Kurkino (KURV) and Sochi (SOCV) of Orthohantavirus dobravaense species, with the principal hosts Apodemus agrarius coreae, Apodemus peninsulae, Rattus norvegicus, Myodes glareolus, Apodemus agrarius agrarius, and Sylvaemus ponticus, respectively. It was found that 97.7% of HFRS cases are caused by PUUV, therefore, this virus plays the main role in the HFRS morbidity structure in Russia.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Orthohantavirus , Child , Humans , Rats , Animals , Adolescent , Hemorrhagic Fever with Renal Syndrome/epidemiology , Murinae , Russia/epidemiology , Incidence , Arvicolinae
12.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445937

ABSTRACT

Spirocyclic compounds containing heterocyclic moieties represent promising 3D scaffolds for modern drug design. In the search for novel anti-flaviviral agents, we have obtained a series of 3-[N,N-bis(sulfonyl)amino]isoxazolines containing spiro-annulated cyclooctane rings and assessed their antiviral activity against tick-borne encephalitis (TBEV), yellow fever (YFV), and West Nile (WNV) viruses. The structural analogs of spirocyclic compounds with a single sulfonyl group or 1,2-annulated cyclooctane ring were also investigated. Almost all the studied 3-[N,N-bis(sulfonyl)amino]isoxazolines revealed antiviral activity against TBEV and WNV. The most active against TBEV was spiro-isoxazoline derivative containing p-nitrophenyl groups in the sulfonyl part (EC50 2.0 ± 0.5 µM), while the highest potency against WNV was found for the compounds with lipophilic substituents in sulfonyl moiety, naphtyl being the most favorable one (EC50 1.3 ± 0.5 µM). In summary, two novel scaffolds of anti-flaviviral agents based on N,N-bis(sulfonyl)amino]isoxazoline were proposed, and the compounds of this type demonstrated activity against TBEV and WNV.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , West Nile Fever , West Nile virus , Yellow Fever , Humans , Antibodies, Viral , Reproduction
13.
Arch Pharm (Weinheim) ; 356(7): e2300027, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37138375

ABSTRACT

Tick-borne encephalitis virus (TBEV), yellow fever virus (YFV), and West Nile virus (WNV) are flaviviruses causing emerging arthropod-borne infections of a great public health concern. Clinically approved drugs are not available to complement or replace the existing vaccines, which do not provide sufficient coverage. Thus, the discovery and characterization of new antiflaviviral chemotypes would advance studies in this field. In this study, a series of tetrahydroquinazoline N-oxides was synthesized, and the antiviral activity of the compounds was assessed against TBEV, YFV, and WNV using the plaque reduction assay along with the cytotoxicity to the corresponding cell lines (porcine embryo kidney and Vero). Most of the studied compounds were active against TBEV (EC50 2 to 33 µM) and WNV (EC50 0.15 to 34 µM) and a few also demonstrated inhibitory activity against YFV (EC50 0.18 to 41 µM). To investigate the potential mechanism of action of the synthesized compounds, time-of-addition (TOA) experiments and virus yield reduction assays were performed for TBEV. The TOA studies suggested that the antiviral activity of the compounds should affect the early stages of the viral replication cycle after cell entry. Compounds with tetrahydroquinazoline N-oxide scaffold show a broad spectrum of activity against flaviviruses and represent a promising chemotype for antiviral drug discovery.


Subject(s)
Culicidae , Encephalitis Viruses, Tick-Borne , Ticks , West Nile virus , Animals , Swine , Antibodies, Viral , Structure-Activity Relationship , Antiviral Agents/pharmacology , Reproduction
14.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175976

ABSTRACT

The binding properties of synthetic and recombinant peptides derived from N-terminal part of ACE2, the main receptor for SARS-CoV-2, were evaluated. Additionally, the ability of these peptides to prevent virus entry in vitro was addressed using both pseudovirus particles decorated with the S protein, as well as through infection of Vero cells with live SARS-CoV-2 virus. Surprisingly, in spite of effective binding to S protein, all linear peptides of various lengths failed to neutralize the viral infection in vitro. However, the P1st peptide that was chemically "stapled" in order to stabilize its alpha-helical structure was able to interfere with virus entry into ACE2-expressing cells. Interestingly, this peptide also neutralized pseudovirus particles decorated with S protein derived from the Omicron BA.1 virus, in spite of variations in key amino acid residues contacting ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Humans , SARS-CoV-2/metabolism , Vero Cells , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding , Peptides/pharmacology , Peptides/metabolism
15.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769336

ABSTRACT

Forty-five strains of AIVs were isolated from wild aquatic birds during their autumn migration through Moscow (Russia). The aim of this work is to study the dynamics of AIV genomes in their natural habitat. Viruses were isolated from fecal sample in embryonated chicken eggs; their complete genomes were sequenced, and a phylogenetic analysis was performed. The gene segments of the same lineage persisted over the years in the absence of persistence of complete viral genomes. The genes for internal proteins of the same lineage were often maintained by the viruses over few years; however, they were typically associated with the genes of novel HA and NA subtypes. Although frequent reassortment events were observed for any pair of internal genes, there was no reassortment between HA and NA segments. The differences in the persistence of phylogenetic lineages of surface and internal proteins and the different evolutionary strategy for these two types of genes of AIVs in primary hosts are discussed.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Phylogeny , Moscow , Animals, Wild , Birds
16.
Antiviral Res ; 209: 105508, 2023 01.
Article in English | MEDLINE | ID: mdl-36581049

ABSTRACT

Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC50 values below 1.9 and 1.3 nM, respectively, and Chikungunya virus (CHIKV) in cytopathic effect inhibition test with EC50 values below 3.2 µM. The compounds are active against respiratory viruses as well: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in cytopathic effect inhibition test and influenza A virus (IAV) in virus titer reduction experiments are inhibited - EC50 values below 51 nM and 2.2 µM, respectively. The activity stems from the presence of a hydrophobic perylene core, and all of the synthesized compounds exhibit comparable 1O2 generation rates. Nonetheless, activity can vary by orders of magnitude depending on the hydrophilic part of the molecule, suggesting a complex mode of action. A time-of-addition experiment and fluorescent imaging indicate that the compounds inhibit viral fusion in a dose-dependent manner. The localization of the compound in the lipid bilayers and visible damage to the viral envelope suggest the membrane as the primary target. Dramatic reduction of antiviral activity with limited irradiation or under treatment with antioxidants further cements the idea of photoinduced ROS-mediated viral envelope damage being the mode of antiviral action.


Subject(s)
COVID-19 , Perylene , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Uracil/pharmacology , Perylene/pharmacology , SARS-CoV-2
17.
Viruses ; 14(12)2022 11 24.
Article in English | MEDLINE | ID: mdl-36560628

ABSTRACT

The ponds of the Moscow region during the autumn migration of birds are a place with large concentrations of mallard ducks, which are the main hosts of avulaviruses (avian paramyxoviruses) and influenza A viruses (IAV). The purpose of this study was the determination of the biological diversity of IAV and avulaviruses isolated from mallards in Moscow's ponds. A phylogenetic analysis of IAV was performed based on complete genome sequencing, and virus genomic reassortment in nature was studied. Almost all IAV genome segments clustered with apathogenic duck viruses according to phylogenetic analysis. The origin of the genes of Moscow isolates were different; some of them belong to European evolutionary branches, some to Asian ones. The majority of closely related viruses have been isolated in the Western Eurasian region. Much less frequently, closely related viruses have been isolated in Siberia, China, and Korea. The quantity and diversity of isolated viruses varied considerably depending on the year and have decreased since 2014, perhaps due to the increasing proportion of nesting and wintering ducks in Moscow.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Phylogeny , Influenza in Birds/epidemiology , Moscow/epidemiology , Ponds , Ducks
18.
Biomedicines ; 10(10)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36289740

ABSTRACT

Tick-borne encephalitis virus (TBEV) is an enveloped RNA virus, a member of the genus Flavivirus (family Flaviviridae). Here, we provide a detailed analysis of the size and structure of the inactivated TBEV vaccine strain Sofjin-Chumakov. Four analytical methods were used to analyze individual TBEV particles-negative staining TEM, cryo-EM, atomic force microscopy (AFM), and nanoparticle tracking analysis (NTA). All methods confirmed that the particles were monodisperse and that their mean size was ~50 nm. Cryo-EM data allowed us to obtain a 3D electron density model of the virus with clearly distinguishable E protein molecules. STEM-EELS analysis detected phosphorus in the particles, which was interpreted as an indicator of RNA presence. Altogether, the described analytical procedures can be valuable for the characterization of inactivated vaccine virus samples.

19.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142740

ABSTRACT

Avian influenza viruses (AIV) of wild ducks are known to be able to sporadically infect domestic birds and spread along poultry. Regular surveillance of AIV in the wild is needed to prepare for potential outbreaks. During long-year monitoring, 46 strains of AIV were isolated from gulls and mallards in Moscow ponds and completely sequenced. Amino acid positions that affect the pathogenicity of influenza viruses in different hosts were tested. The binding affinity of the virus for receptors analogs typical for different hosts and the pathogenicity of viruses for mice and chickens were investigated. Moscow isolates did not contain well-known markers of pathogenicity and/or adaptation to mammals, so as a polybasic cleavage site in HA, substitutions of 226Q and 228G amino acids in the receptor-binding region of HA, and substitutions of 627E and 701D amino acids in the PB2. The PDZ-domain ligand in the NS protein of all studied viruses contains the ESEV or ESEI sequence. Although several viruses had the N66S substitution in the PB1-F2 protein, all Moscow isolates were apathogenic for both mice and chickens. This demonstrates that the phenotypic manifestation of pathogenicity factors is not absolute but depends on the genome context.


Subject(s)
Influenza A virus , Influenza in Birds , Amino Acids/genetics , Animals , Chickens , Ducks , Influenza A virus/genetics , Ligands , Mammals , Mice , Phylogeny , Virulence/genetics , Virulence Factors
20.
Emerg Microbes Infect ; 11(1): 2229-2247, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36031930

ABSTRACT

Although unprecedented efforts aiming to stop the COVID-19 pandemic have been made over the past two years, SARSCoV-2 virus still continues to cause intolerable health and economical losses. Vaccines are considered the most effective way to prevent infectious diseases, which has been reaffirmed for COVID-19. However, in the context of the continuing virus spread because of insufficient vaccination coverage and emergence of new variants of concern, there is a high demand for vaccination strategy amendment. The ability to elicit protective immunity at the entry gates of infection provided by mucosal vaccination is key to block virus infection and transmission. Therefore, these mucosal vaccines are believed to be a "silver bullet" that could bring the pandemic to an end. Here, we demonstrate that the intranasally delivered Gam-COVID-Vac (Sputnik V) vaccine induced a robust (no less than 180 days) systemic and local immune response in mice. High immunogenic properties of the vaccine were verified in non-human primates (common marmosets) by marked IgG and neutralizing antibody (NtAb) production in blood serum, antigen-specific Tcell proliferation and cytokine release of peripheral blood mononuclear cells accompanied by formation of IgA antibodies in the nasal mucosa. We also demonstrate that Sputnik V vaccine can provide sterilizing immunity in K18-hACE2 transgenic mice exposed to experimental lethal SARS-CoV-2 infection protecting them against severe lung immunopathology and mortality. We believe that intranasal Sputnik V vaccine is a promising novel needle-free mucosal vaccine candidate for primary immunization as well as for revaccination and is worth further clinical investigation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cytokines , Humans , Immunogenicity, Vaccine , Immunoglobulin A , Immunoglobulin G , Leukocytes, Mononuclear , Mice , Pandemics/prevention & control , Primates , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...