Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Immunol ; 14: 1285743, 2023.
Article in English | MEDLINE | ID: mdl-37901253

ABSTRACT

B-cell acute lymphoblastic leukemia (B-ALL) stands as the primary contributor to childhood cancer-related mortality on a global scale. The development of the most conventional forms of this disease has been proposed to be conducted by two different steps influenced by different types of risk factors. The first step is led by a genetic insult that is presumably acquired before birth that transforms a healthy cell into a preleukemic one, which is maintained untransformed until the second step takes place. This necessary next step to leukemia development will be triggered by different risk factors to which children are exposed after birth. Murine models that recap the stepwise progression of B-ALL have been instrumental in identifying environmental and genetic factors that contribute to disease risk. Recent evidence from these models has demonstrated that specific environmental risk factors, such as common infections or gut microbiome dysbiosis, induce immune stress, driving the transformation of preleukemic cells, and harboring genetic alterations, into fully transformed leukemic cells. Such models serve as valuable tools for investigating the mechanisms underlying preleukemic events and can aid in the development of preventive approaches for leukemia in child. Here, we discuss the existing knowledge, learned from mouse models, of the impact of genetic and environmental risk factors on childhood B-ALL evolution and how B-ALL prevention could be reached by interfering with preleukemic cells.


Subject(s)
Leukemia, B-Cell , Leukemia, Lymphocytic, Chronic, B-Cell , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Mice , Animals , Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Risk Factors
2.
Nat Commun ; 14(1): 5159, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620322

ABSTRACT

The initial steps of B-cell acute lymphoblastic leukemia (B-ALL) development usually pass unnoticed in children. Several preclinical studies have shown that exposure to immune stressors triggers the transformation of preleukemic B cells to full-blown B-ALL, but how this takes place is still a longstanding and unsolved challenge. Here we show that dysregulation of innate immunity plays a driving role in the clonal evolution of pre-malignant Pax5+/- B-cell precursors toward leukemia. Transcriptional profiling reveals that Myd88 is downregulated in immune-stressed pre-malignant B-cell precursors and in leukemic cells. Genetic reduction of Myd88 expression leads to a significant increase in leukemia incidence in Pax5+/-Myd88+/- mice through an inflammation-dependent mechanism. Early induction of Myd88-independent Toll-like receptor 3 signaling results in a significant delay of leukemia development in Pax5+/- mice. Altogether, these findings identify a role for innate immunity dysregulation in leukemia, with important implications for understanding and therapeutic targeting of the preleukemic state in children.


Subject(s)
Burkitt Lymphoma , Leukemia , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Mice , Precursor Cells, B-Lymphoid , Myeloid Differentiation Factor 88/genetics , Signal Transduction , Adaptor Proteins, Signal Transducing , Immunity, Innate , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
3.
Int J Mol Sci ; 23(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35886910

ABSTRACT

Leukemia is the most usual childhood cancer, and B-cell acute lymphoblastic leukemia (B-ALL) is its most common presentation. It has been proposed that pediatric leukemogenesis occurs through a "multi-step" or "multi-hit" mechanism that includes both in utero and postnatal steps. Many childhood leukemia-initiating events, such as chromosomal translocations, originate in utero, and studies so far suggest that these "first-hits" occur at a far higher frequency than the incidence of childhood leukemia itself. The reason why only a small percentage of the children born with such preleukemic "hits" will develop full-blown leukemia is still a mystery. In order to better understand childhood leukemia, mouse modeling is essential, but only if the multistage process of leukemia can be recapitulated in the model. Therefore, mouse models naturally reproducing the "multi-step" process of childhood B-ALL will be essential to identify environmental or other factors that are directly linked to increased risk of disease.


Subject(s)
Myelodysplastic Syndromes , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Preleukemia , Animals , Disease Models, Animal , Humans , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Preleukemia/genetics , Translocation, Genetic
4.
Cancer Res ; 82(6): 1098-1109, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35131871

ABSTRACT

Preventing development of childhood B-cell acute lymphoblastic leukemia (B-ALL), a disease with devastating effects, is a longstanding and unsolved challenge. Heterozygous germline alterations in the PAX5 gene can lead to B-ALL upon accumulation of secondary mutations affecting the JAK/STAT signaling pathway. Preclinical studies have shown that this malignant transformation occurs only under immune stress such as exposure to infectious pathogens. Here we show in Pax5+/- mice that transient, early-life administration of clinically relevant doses of ruxolitinib, a JAK1/2 inhibitor, significantly mitigates the risk of B-ALL following exposure to infection; 1 of 29 animals treated with ruxolitinib developed B-ALL versus 8 of 34 untreated mice. Ruxolitinib treatment preferentially targeted Pax5+/- versus wild-type B-cell progenitors and exerted unique effects on the Pax5+/- B-cell progenitor transcriptional program. These findings provide the first in vivo evidence for a potential strategy to prevent B-ALL development. SIGNIFICANCE: JAK/STAT inhibition suppresses tumorigenesis in a B-ALL-susceptible mouse model, presenting a novel approach to prevent B-ALL onset.


Subject(s)
Janus Kinases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Humans , Janus Kinases/genetics , Mice , PAX5 Transcription Factor/genetics , STAT Transcription Factors , Signal Transduction/genetics
5.
Front Cell Dev Biol ; 9: 704591, 2021.
Article in English | MEDLINE | ID: mdl-34336858

ABSTRACT

ETV6-RUNX1 is almost exclusively associated with childhood B-cell acute lymphoblastic leukemia (B-ALL), but the consequences of ETV6-RUNX1 expression on cell lineage decisions during B-cell leukemogenesis are completely unknown. Clinically silent ETV6-RUNX1 preleukemic clones are frequently found in neonatal cord blood, but few carriers develop B-ALL as a result of secondary genetic alterations. The understanding of the mechanisms underlying the first transforming steps could greatly advance the development of non-toxic prophylactic interventions. Using genetic lineage tracing, we examined the capacity of ETV6-RUNX1 to instruct a malignant phenotype in the hematopoietic lineage by cell-specific Cre-mediated activation of ETV6-RUNX1 from the endogenous Etv6 gene locus. Here we show that, while ETV6-RUNX1 has the propensity to trigger both T- and B-lymphoid malignancies, it is the second hit that determines tumor cell identity. To instigate leukemia, both oncogenic hits must place early in the development of hematopoietic/precursor cells, not in already committed B-cells. Depending on the nature of the second hit, the resulting B-ALLs presented distinct entities that were clearly separable based on their gene expression profiles. Our findings give a novel mechanistic insight into the early steps of ETV6-RUNX1+ B-ALL development and might have major implications for the potential development of ETV6-RUNX1+ B-ALL prevention strategies.

6.
Blood ; 137(13): 1741-1753, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33024996

ABSTRACT

Diffuse large B-cell lymphomas (DLBCLs) are clinically and genetically heterogeneous tumors. Deregulation of diverse biological processes specific to B cells, such as B-cell receptor (BCR) signaling and motility regulation, contribute to lymphomagenesis. Human germinal center associated lymphoma (HGAL) is a B-cell-specific adaptor protein controlling BCR signaling and B lymphocyte motility. In normal B cells, it is expressed in germinal center (GC) B lymphocytes and promptly downregulated upon further differentiation. The majority of DLBCL tumors, primarily GC B-cell types, but also activated types, express HGAL. To investigate the consequences of constitutive expression of HGAL in vivo, we generated mice that conditionally express human HGAL at different stages of hematopoietic development using 3 restricted Cre-mediated approaches to initiate expression of HGAL in hematopoietic stem cells, pro-B cells, or GC B cells. Following immune stimulation, we observed larger GCs in mice in which HGAL expression was initiated in GC B cells. All 3 mouse strains developed DLBCL at a frequency of 12% to 30% starting at age 13 months, leading to shorter survival. Immunohistochemical studies showed that all analyzed tumors were of the GC B-cell type. Exon sequencing revealed mutations reported in human DLBCL. Our data demonstrate that constitutive enforced expression of HGAL leads to DLBCL development.


Subject(s)
Carcinogenesis/genetics , Intracellular Signaling Peptides and Proteins/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Microfilament Proteins/genetics , Animals , Carcinogenesis/pathology , Cell Line , Female , Gain of Function Mutation , Gene Expression Regulation, Neoplastic , Germinal Center/metabolism , Germinal Center/pathology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, Inbred C57BL
7.
Sci Rep ; 10(1): 19189, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154497

ABSTRACT

PAX5 is one of the most frequently mutated genes in B-cell acute lymphoblastic leukemia (B-ALL), and children with inherited preleukemic PAX5 mutations are at a higher risk of developing the disease. Abnormal profiles of inflammatory markers have been detected in neonatal blood spot samples of children who later developed B-ALL. However, how inflammatory signals contribute to B-ALL development is unclear. Here, we demonstrate that Pax5 heterozygosis, in the presence of infections, results in the enhanced production of the inflammatory cytokine interleukin-6 (IL-6), which appears to act in an autocrine fashion to promote leukemia growth. Furthermore, in vivo genetic downregulation of IL-6 in these Pax5 heterozygous mice retards B-cell leukemogenesis, and in vivo pharmacologic inhibition of IL-6 with a neutralizing antibody in Pax5 mutant mice with B-ALL clears leukemic cells. Additionally, this novel IL-6 signaling paradigm identified in mice was also substantiated in humans. Altogether, our studies establish aberrant IL6 expression caused by Pax5 loss as a hallmark of Pax5-dependent B-ALL and the IL6 as a therapeutic vulnerability for B-ALL characterized by PAX5 loss.


Subject(s)
B-Lymphocytes/metabolism , Inflammation/metabolism , Interleukin-6/metabolism , PAX5 Transcription Factor/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction/genetics , Animals , Inflammation/genetics , Interleukin-6/genetics , Mice , Mice, Knockout , PAX5 Transcription Factor/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
8.
Blood ; 136(18): 2003-2017, 2020 10 29.
Article in English | MEDLINE | ID: mdl-32911536

ABSTRACT

The majority of childhood leukemias are precursor B-cell acute lymphoblastic leukemias (pB-ALLs) caused by a combination of prenatal genetic predispositions and oncogenic events occurring after birth. Although genetic predispositions are frequent in children (>1% to 5%), fewer than 1% of genetically predisposed carriers will develop pB-ALL. Although infectious stimuli are believed to play a major role in leukemogenesis, the critical determinants are not well defined. Here, by using murine models of pB-ALL, we show that microbiome disturbances incurred by antibiotic treatment early in life were sufficient to induce leukemia in genetically predisposed mice, even in the absence of infectious stimuli and independent of T cells. By using V4 and full-length 16S ribosomal RNA sequencing of a series of fecal samples, we found that genetic predisposition to pB-ALL (Pax5 heterozygosity or ETV6-RUNX1 fusion) shaped a distinct gut microbiome. Machine learning accurately (96.8%) predicted genetic predisposition using 40 of 3983 amplicon sequence variants as proxies for bacterial species. Transplantation of either wild-type (WT) or Pax5+/- hematopoietic bone marrow cells into WT recipient mice revealed that the microbiome is shaped and determined in a donor genotype-specific manner. Gas chromatography-mass spectrometry (GC-MS) analyses of sera from WT and Pax5+/- mice demonstrated the presence of a genotype-specific distinct metabolomic profile. Taken together, our data indicate that it is a lack of commensal microbiota rather than the presence of specific bacteria that promotes leukemia in genetically predisposed mice. Future large-scale longitudinal studies are required to determine whether targeted microbiome modification in children predisposed to pB-ALL could become a successful prevention strategy.


Subject(s)
Disease Susceptibility , Dysbiosis/complications , Feces/microbiology , Gastrointestinal Microbiome , Leukemia, Experimental/prevention & control , PAX5 Transcription Factor/physiology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/prevention & control , Animals , Female , Leukemia, Experimental/genetics , Leukemia, Experimental/microbiology , Leukemia, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/microbiology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
9.
Front Cell Dev Biol ; 7: 137, 2019.
Article in English | MEDLINE | ID: mdl-31380372

ABSTRACT

Leukemogenesis is considered to be a process by which a normal cell acquires new but aberrant identity in order to disseminate a malignant clonal population. Under this setting, the phenotype of the leukemic cells is identical to the leukemia-initiating cell in which the genetic insult is taking place. Thus, with some exceptions, B-cell and T-cell childhood leukemias are supposed to arise from B- or T-committed cells. In contrast, several recent studies have revealed that genetic alterations may act in a "hit-and-run" way in the cell-of-origin by imposing the tumor cell identity giving rise to either B-cell or T-cell leukemias. This novel mechanism of cell transformation is mediated by an epigenetic priming mechanism that is established by the initial genetic lesion. This initial hit might be unnecessary for the subsequent tumor evolution and conservation, being the epigenetic priming the engine for the tumor evolution.

10.
Int J Mol Sci ; 19(5)2018 May 17.
Article in English | MEDLINE | ID: mdl-29772764

ABSTRACT

Due to the clonal nature of human leukemia evolution, all leukemic cells carry the same leukemia-initiating genetic lesions, independently of the intrinsic tumoral cellular heterogeneity. However, the latest findings have shown that the mode of action of oncogenes is not homogeneous throughout the developmental history of leukemia. Studies on different types of hematopoietic tumors have shown that the contribution of oncogenes to leukemia is mainly mediated through the epigenetic reprogramming of the leukemia-initiating target cell. This driving of cancer by a malignant epigenetic stem cell rewiring is, however, not exclusive of the hematopoietic system, but rather represents a common tumoral mechanism that is also at work in epithelial tumors. Tumoral epigenetic reprogramming is therefore a new type of interaction between genes and their target cells, in which the action of the oncogene modifies the epigenome to prime leukemia development by establishing a new pathological tumoral cellular identity. This reprogramming may remain latent until it is triggered by either endogenous or environmental stimuli. This new view on the making of leukemia not only reveals a novel function for oncogenes, but also provides evidence for a previously unconsidered model of leukemogenesis, in which the programming of the leukemia cellular identity has already occurred at the level of stem cells, therefore showing a role for oncogenes in the timing of leukemia initiation.


Subject(s)
Leukemia/etiology , Leukemia/metabolism , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cellular Reprogramming , Environment , Epigenesis, Genetic , Genetic Predisposition to Disease , Hematopoiesis/genetics , Humans , Leukemia/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oncogenes
SELECTION OF CITATIONS
SEARCH DETAIL
...